
Using interoperating conceptual tools to

improve searches in Kaj Munk

Ulrik Petersen

Department of Communication and Psychology
Kroghstræde 3

DK – 9220 Aalborg East
Denmark

ulrikp@hum.aau.dk

http://www.kajmunk.hum.aau.dk

Abstract. Query Expansion is a technique whereby a query in an infor-
mation retrieval system is expanded with more terms, thus most likely
increasing the number of relevant documents retrieved. In this paper, we
describe a prototype of a system built around a number of interoper-
ating conceptual structures tools, and how it uses Query Expansion to
retrieve greater numbers of relevant documents. Thus the system is an
example of how interoperating conceptual structures tools can be used
to implement an information retrieval system.

1 Introduction

In what ways is it possible to query a corpus of natural language text concep-
tually? That is the motivating question behind the research presented in this
paper. In order to answer this question partially, we have built a prototype sys-
tem which incorporates three technologies, namely the Amine Platform [1–6],
the Emdros corpus query system [7–10], and some natural language processing
software in the form of a lemmatizer and a part of speech tagger1. The system is
able to increase the recall of queries for a given corpus of text, by expanding the
query with lemmas taken from an Amine ontology. The system could not have
been built without the integration of the three key technologies mentioned. In
this paper, we show how the system works in terms of its architecture, and how
it is able to achieve greater recall.

The organizational context of the present research is the Kaj Munk Research
Centre at Aalborg University, Denmark. Kaj Munk (1898-1944) was a Danish
playwright, pastor, poet, and author, who was very influential both in Danish
cultural life and outside of Denmark in the period between the two World Wars.
He was killed by the Germans in 1944 for his resistance stance.

The Kaj Munk Research Centre has bought the nachlass of Kaj Munk, and is
in the process of digitizing the material for electronic publication on the web and

1 The lemmatizer and part of speech tagger employed in this research are the ones
developed by Centre for Language Technology (CST), Copenhagen, Denmark. See
http://www.cst.dk.



in other ways. The envisaged website will feature advanced search capabilities
that go beyond mere matching of text strings into the realm of semantics. In this
endeavour, conceptual structures play a key role, and software tools that deal
with conceptual structures become critical in the development of the underlying
database technology.

The rest of the paper is laid out as follows. First, we introduce the litera-
ture behind our system. Second, we give an overview of our system. Third, we
offer a more detailed look at the query-process that leads to semantic querying.
Fourth, we give an example of the query process. Fifth, we give an analysis of
the functionality in terms of the precision and recall of the system. Sixth, we
report on the method of achieving interoperability between the various parts of
the system. Finally, we conclude the paper.

2 Literature review

Within the field of information retrieval, the notions of precision and recall are
often used to describe how well a search system performs. Briefly, recall is a
percentage showing how many documents out of all relevant documents were
retrieved, while precision is a percentage showing how many of the retrieved
documents are in fact relevant. For more information, see [11] and [12].

Query Expansion refers to a class of techniques in Information Retrieval in
which a query given by the user is expanded with more query terms. The intent is
always either to increase the recall, or to increase the precision, or both. Query
Expansion is an old technique, but as demonstrated by the literature, a very
useful technique. See for example, [13–15]. In so far as WordNet [16] can be
considered an ontology, [13, 17, 15] among many others show that ontologies can
prove valuable in the process of Query Expansion. The article [18] shows how
compound forms in Danish can be split into their respective lemmas, then used
as a basis for Query Expansion using a thesaurus.

The present author has built a corpus query system called Emdros. The
Emdros software is a generic query system for “analyzed or annotated text.”
As such, the software accommodates “text plus information about that text.”2

In the present research, Emdros is the component that stores and queries both
the text corpus to be queried and the part of speech and lemma information
with which each token is annotated. Additional information such as sentence
boundaries, paragraph boundaries, and noun phrase boundaries are also present,
but are not used in the present research. Document boundaries, however, are
used.

Emdros was written in C++, but has language bindings for several program-
ming languages including Java. These language bindings are provided through
SWIG.3 For more information on Emdros, the reader is invited to consult both

2 This phrase is taken from [19], which is the PhD thesis of Crist-Jan Doedens. Emdros
implements an extension of Doedens’ database model, and a subset of Doedens’ query
language. As such, Emdros can be seen as a derivate of the labours of Dr. Doedens.

3 See http://www.swig.org. See also [20].



the Emdros website4 and [7–10], all of which can be downloaded from the au-
thor’s website5.

The Amine Platform is a platform intended for development of intelligent
systems and multi-agent systems [5]. It implements a large array of the technol-
ogy components needed for building Knowledge Systems, including an ontology
builder, a CG layer with concomitant CG operations, and a logic inference en-
gine built around the integration of Prolog and CGs.6 The latter component
is called Prolog+CG, and is the software hub in the prototype which we have
developed.

3 System Overview

An overview of the system is given in Fig. 1. It is given in the form of a conceptual
graph, with an implied ontology of concept types such as the one given in Fig.
2, and an implied relation hierarchy such as the one given in Fig. 3.

As can be seen from the ontology of concept types in Fig. 2, there are essen-
tially two kinds of concepts in Fig. 1: Software and Data. Indeed, the relation
types reflect this, as can be seen in Fig. 3, in which all subtypes of DataSoft-
wareRole have the signature (Data,Software), and all subtypes of SoftwareSoft-
wareRole have the signature (Software,Software). Consequently, the signature of
Role in our small conceptual graph of Fig. 1 must be (Bits,Software), indicating
that the outgoing arrow on every relation always is attached to a concept of type
Software (cf. [21–24]).

There are three related but distinct flows of data in Fig. 1. The first flow
starts with the TextCorpus at the left edge of the leftmost row. This TextCorpus
(which, in our case, is the corpus of published sermons of Kaj Munk) is read
by CST’s part of speech tagger and lemmatizer to produce a pos-tagged and
lemmatized corpus. This corpus is then read by a program which converts the
corpus to a number of CREATE OBJECT statements in the MQL query language
of Emdros. This produces the MQLCorpus, which is read by Emdros to produce
the EmdrosDatabase at the bottom right hand corner of Fig. 1.

The second flow starts with the Amine Ontology Builder in the middle of the
second row of Fig. 1, in which a domain expert creates an ontology of the domain
which one would like to query. This produces the AmineOntology, which again
is read by Amine’s Prolog+CG engine. Notice that the method of production
of the ontology is irrelevant for our prototype: It might just as well have been
produced automatically. In our case, for simplicity and accuracy, we produced
our own ontology “by hand.”

The third, and main, flow starts with the user query in the top right hand
corner of Fig. 1. This query is read by the Prolog+CG programs written for our

4 http://emdros.org
5 http://ulrikp.org
6 However, Amine is much more than the few components listed here. In-

terested readers are invited to consult [5, 6] and the Amine Website:
http://amine-platform.sourceforge.net



Fig. 1. Overview of our system

prototype, and is transformed, inside of Prolog, to an Emdros query based on
the type(s) from the AmineOntology given in the query. This Emdros query is
then fed to the Amine-Emdros bridge (through the interpreter-nature of Amine
Prolog+CG), which takes care of calling Emdros to query the EmdrosDatabase
in the bottom right hand corner of Fig. 1. An answer comes back from Em-
dros to the Amine-Emdros bridge. This answer is then further processed by the
Amine-Emdros bridge in order to obtain not only the words found, but also their
context.7 This result is then passed back to the Prolog+CG programs (through
the interpreter-nature of Amine Prolog+CG), which then displays the results to
the user.

7 Emdros’s query language is designed to be very generic. As such, it uses a generic
method of returning query results, which must then be interpreted in the context of
a given database. This interpretation usually involves retrieval of more objects from
the database, such as whole sentences and their constituent tokens, and/or the titles
of the document(s) in which the results are found.



SoftwareData

Bits

TextCorpus LemmatizedCorpus MQLCorpus

AmineOntology EmdrosDatabaseCorpus

Fig. 2. A possible ontology for the concept types in our system

4 Querying

In our prototype, the user enters a query in the form of a set Q of types from the
Amine ontology, along with an indication of whether supertypes or subtypes are
wanted. If supertypes are wanted, a set Ei are constructed containing n levels
of supertypes of each term ti from Q. Similarly for subtypes, if subtypes are
wanted.

An Emdros query is then constructed from the sets Ei, as follows. For each set
Ei, a single query fragment (technically, an “object block” retrieving an object
with certain characteristics) is created, finding all objects of type token whose
lemma is one of the terms ej in Ei, with Boolean disjunction being the operator
between the comparison. This could look as follows:

[token lemma=’party’ or lemma=’organization’ or lemma=’group’]

If there is more than one set Ei, then all permutations of all sequential orders
of the query fragments arising from each Ei is constructed, allowing for arbitrary
space in between each query fragment, and using an OR construct on strings
of blocks between each permutation. This results in a string of OR-separated
strings of blocks, where each string of blocks represents one possible order of the
query terms. Finally, this string of OR-separated strings is wrapped in a block
indicating that the search is to be done within document boundaries.

Variations over this theme abound. For example, the number of levels n to
go up or down in the ontology can be varied; sibling nodes may be considered;
various measures of semantic distance may be employed in determining which
concepts to include in the search; word-sense disambiguation may be performed
based on either the query terms and their cooccurrence in the query, or on
the documents actually stored in the database, or both; the context may be
changed from “Document” to a more restrictive “paragraph” or even “sentence”
textual unit, thus increasing the likelihood that the query terms do in fact have



writer creator

originator caller interpreter

DataSoftwareRole SoftwareSoftwareRole

user

reader

Role

accessor

Fig. 3. A possible ontology for the relation types in our system

something to do with each other; named entity recognition may be performed,
and named entities may be classified as per the ontology, thus aiding in increasing
recall; compounds may be split and used as the basis of further Query Expansion,
as described in [18]; parsing or chunking of the texts may be performed so as
to aid in identifying noun phrases that could aid in identifying more precisely
where to search for given kinds of entries from the ontology; the ontology may
be enriched with part of speech information, such that this information can be
taken into account when searching. Many other techniques have been tried over
the years, all built up around the single, simple idea of Query Expansion.

5 Query Example

In this section, we give an example of how the query-process works.
Consider the small ontology in Fig. 4. It is a sample ontology of concepts

from the political domain. Some of the concepts are annotated underneath with
zero or more lemmas, separated by a vertical bar if more than one are present.
Where no lemma corresponds to the type, the number of lemmas is zero.

Suppose the user enters a query in which the set Q of query types is {
PartyMember, PoliticalEmployee }, and suppose that the user specifies that 3
levels of subtypes are to be used for query expansion. In this case, two sets E0 =
{ partymember, minister, primeminister, MP, parliamentmember } and E1 = {
spindoctor } are constructed.

From these sets, the two object blocks:



PrimeMinister
primeminister

Minister
minister

MemberOfParliament
MP|parliamentmember

PartyMember
partymember

Party
party

SpinDoctor
spindoctor

PoliticalEntity

Entity

PoliticalEmployee

Fig. 4. A sample domain ontology of political language

[token lemma=’partymember’ OR lemma=’minister’

OR lemma=’primeminister’ OR lemma=’MP’

OR lemma=’parliamentmember’]

and

[token lemma=’spindoctor’]

are constructed. There are only two possible permutations of the order in which
two objects can occur (2 factorial), so these object blocks give rise to the query
shown in Fig. 5.

Briefly, the query means that, within the context of a document, two tokens
must be found, in either order, where the lemma of each token is either drawn
from the sets E0 and E1. The “..” between each [token] object block means
that the tokens need not be adjacent, but may be separated by arbitrary space,
within the scope of the context Document.

This query is executed by the Amine-Emdros bridge, and the results post-
processed in order to get the context of the “hits”, to be shown to the user by
Prolog+CG.



[Document

[token lemma=’partymember’ OR lemma=’minister’

OR lemma=’primeminister’ OR lemma=’MP’

OR lemma=’parliamentmember’

]

..

[token lemma=’spindoctor’]

OR

// Now the other order is tried...

[token lemma=’spindoctor’]

..

[token lemma=’partymember’ OR lemma=’minister’

OR lemma=’primeminister’ OR lemma=’MP’

OR lemma=’parliamentmember’

]

]

Fig. 5. Example Emdros query

6 Precision and Recall

As mentioned in Sect. 2, “recall” is a measure used within Information Retrieval
to describe how well a system performs; in particular, it shows how many docu-
ments were retrieved, divided by the total number of relevant documents for any
given query. “Precision,” on the other hand, is the number of relevant documents
returned, divided by the number of documents returned [12].

As confirmed by the research reported in [13–15,17], our system improves
recall, and for the same reason that any Query Expansion technique in general
improves recall: Since semantically similar terms are added to the query, more
documents that contain semantically similar terms will be found. Since relevant
documents may contain terms semantically similar to the original query terms,
yet may not contain the actual query terms, increasing the number of documents
retrieved with semantically similar terms will most likely increase recall.

We have not evaluated our system formally on either precision or recall mea-
sures, but this is something for future research.

7 Interoperability

This being a practical rather than theoretical paper, a number of comments on
the interoperability of the various system components are in order.

Both Amine’s ontology builder, Amine’s Prolog+CG, and Emdros can be
viewed as tools for dealing with conceptual structures; Amine’s tools more so
than Emdros. Amine’s treatment of conceptual structures goes right to the core



of the very purpose for which Amine was created [5, 6]; thus a large part of
Amine’s codebase is centered around conceptual structures. Emdros, on the other
hand, has a different focus, namely that of storage and retrieval of annotated
text. Given that lemmas represent a unified form for all forms of a given word,
and given that this simplifies the task of assigning meaning to any given word,
and given that lemmas play an important role in the selection of labels for the
concept types in many kinds of ontologies, and given that Emdros can store
lemmas just as well as any other annotation, Emdros can be seen to be able to
deal with conceptual structures.

The interoperability of Amine with Emdros was achieved through the use of
a “bridge” written in Java. This bridge is simply a Java class which instantiates
a connection to an Emdros datbase, receives queries, and “harvests” the results.
The latter task involves processing the results of a query, then retrieving as much
context as necessary for the purposes at hand. This usually involves things like
retrieving document titles, all the words of the sentence surrounding a “hit”,
retrieval of other objects necessary for display of the hits, etc.

Amine’s Prolog+CG supports calling arbitrary Java methods and instanti-
ating arbitrary Java objects from within Prolog+CG. This is the method used
in our prototype system, where Prolog+CG instantiates an “Amine-Emdros
bridge” as a Java object, then calls methods on this bridge both to retrieve
query results and to postprocess them as described above.

The present author found that Amine’s Java-integration made it easy to
call both the Amine API and the Emdros bridge. The ability to call arbitrary
methods in the host language (Java, in this case) was key in making the inter-
operability work.

8 Conclusion

We have described a prototype system that enables a user to query a collection
of documents semantically rather than just by keyword. This is done through the
use of three key technologies: The Amine Platform, the Emdros Corpus Query
System, and a lemmatizer and part of speech tagger for the target language. An
ontology is used to guide the process of query expansion, leading to a greater
number of relevant documents being returned than would have been the case,
had the program only found documents containing the original query terms.

Pointers to further research have already been given.

Acknowledgements

Thanks are due to cand.scient. Jørgen Albretsen, who provided the ontology used
in this prototype. Prof. dr.scient., PhD Peter Øhrstrøm provided many of the
research ideas used in this research. The Danish Centre for Language Technology
(CST) provided the part of speech tagger and lemmatizer used. Figure 1 was



drawn with the CharGer software written by Harry Delugach.8 The SWIG team9

made the integration of Emdros with Java possible. Finally, many thanks to Prof.
Dr. Adil Kabbaj, who wrote the Amine-Platform, without which this research
would have been much more difficult to carry out.

References

1. Kabbaj, A., Frasson, C., Kaltenbach, M., Djamen, J.Y.: A conceptual and contex-
tual object-oriented logic programming: The PROLOG++ language. In Tepfen-
hart, W.M., Dick, J.P., Sowa, J.F., eds.: Conceptual Structures: Current Practices
– Second International Conference on Conceptual Structures, ICCS’94, College
Park, Maryland, USA, August 1994, Proceedings. Volume 835 of Lecture Notes in
Artificial Intelligence (LNAI)., Berlin, Springer Verlag (1994) 251–274

2. Kabbaj, A.: Un systeme multi-paradigme pour la manipulation des connaissances
utilisant la theorie des graphes conceptuels. PhD thesis, Univ. De Montreal,
Canada (1996)

3. Kabbaj, A., Janta-Polczynski, M.: From PROLOG++ to PROLOG+CG : A CG
object-oriented logic programming language. In Ganter, B., Mineau, G.W., eds.:
Proceedings of ICCS 2000. Volume 1867 of Lecture Notes in Artificial Intelligence
(LNAI)., Berlin, Springer Verlag (2000) 540–554

4. Kabbaj, A., Moulin, B., Gancet, J., Nadeau, D., Rouleau, O.: Uses, improvements,
and extensions of Prolog+CG : Case studies. In Delugach, H., Stumme, G., eds.:
Conceptual Structures: 9th International Conference on Conceptual Structures,
ICCS 2001, Stanford, CA, USA, July/August 2001, Proceedings. Volume 2120 of
Lecture Notes in Artificial Intelligence (LNAI)., Berlin, Springer Verlag (2001)
346–359

5. Kabbaj, A.: Development of intelligent systems and multi-agents systems with
amine platform. [25] 286–299

6. Kabbaj, A., Bouzouba, K., El Hachimi, K., Ourdani, N.: Ontologies in Amine
Platform: Structures and processes. [25] 300–313

7. Petersen, U.: Emdros — a text database engine for analyzed or annotated text.
In: Proceedings of COLING 2004. (2004) 1190–1193 http://emdros.org/petersen-
emdros-COLING-2004.pdf.

8. Petersen, U.: Evaluating corpus query systems on functionality and speed:
TIGERSearch and Emdros. In Angelova, G., Bontcheva, K., Mitkov, R., Nicolov,
N., Nikolov, N., eds.: International Conference Recent Advances in Natural Lan-
guage Processing 2005, Proceedings, Borovets, Bulgaria, 21-23 September 2005,
Shoumen, Bulgaria, INCOMA Ltd. (2005) 387–391

9. Petersen, U.: Principles, implementation strategies, and evaluation of a corpus
query system. In: Proceedings of the FSMNLP 2005. Volume 4002 of Lecture Notes
in Artifical Intelligence., Berlin, Heidelberg, New York, Springer Verlag (2006)

10. Petersen, U.: Querying both parallel and treebank corpora: Evaluation of a
corpus query system. In: Proceedings of LREC 2006. (2006) Available as
http://ulrikp.org/pdf/LREC2006.pdf.

11. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. Addison-Wesley
(1999)

8 http://charger.sourceforge.net
9 http://www.swig.org, led by David Beazley.



12. Frakes, W.B., Baeza-Yates, R.: Information Retrieval: Data Structures and Algo-
rithms. Prentice Hall (1992)

13. Voorhees, E.M.: Query expansion using lexical-semantic relations. In: SIGIR ’94:
Proceedings of the 17th annual international ACM SIGIR conference on Research
and development in information retrieval, New York, NY, USA, Springer-Verlag
New York, Inc. (1994) 61–69

14. Mitra, M., Singhal, A., Buckley, C.: Improving automatic query expansion. In:
SIGIR ’98: Proceedings of the 21st annual international ACM SIGIR conference
on Research and development in information retrieval, New York, NY, USA, ACM
Press (1998) 206–214

15. Moldovan, D.I., Mihalcea, R.: Using WordNet and lexical operators to improve
internet searches. IEEE Internet Computing 4(1) (2000) 34–43

16. Fellbaum, C., ed.: WordNet: An Electronic Lexical Database. MIT Press, London,
England and Cambridge, Massachusetts (1998)

17. Smeaton, A.F., Quigley, I.: Experiments on using semantic distances between
words in image caption retrieval. In: Research and Development in Information
Retrieval. (1996) 174–180

18. Pedersen, B.S.: Using shallow linguistic analysis to improve search on Danish
compounds. Nat. Lang. Eng. 13(1) (2007) 75–90

19. Doedens, C.J.: Text Databases: One Database Model and Several Retrieval Lan-
guages. Number 14 in Language and Computers. Editions Rodopi Amsterdam,
Amsterdam and Atlanta, GA (1994) ISBN 90-5183-729-1.

20. Beazley, D.M., Fletcher, D., Dumont, D.: Perl extension building
with SWIG (1998) Presented at the O’Reilly Perl Conference 2.0,
August 17-20, 1998, San Jose, California. Access online 2007-04-22:
http://www.swig.org/papers/Perl98/swigperl.htm.

21. Sowa, J.F.: Conceptual Structures: Information Processing in Mind and Machine.
Addison-Wesley, Reading, MA. (1984)

22. Sowa, J.F.: Conceptual graphs summary. In Nagle, T.E., Nagle, J.A., Gerholz,
L.L., Eklund, P.W., eds.: Conceptual Structures: Current Research and Practice.
Ellis Horwood, New York (1992) 3–51

23. Sowa, J.F.: Knowledge Representation: Logical, Philosophical, and Computational
Foundations. Brooks/Cole Thomson Learning, Pacific Grove, CA (2000)

24. Petersen, U., Schärfe, H., Øhrstrøm, P.: Online course in knowledge representation
using conceptual graphs. On the web: http://www.huminf.aau.dk/cg/ (2001-
2007)

25. Henrik Schärfe, Pascal Hitzler, P.Ø., ed.: Conceptual Structures: Inspiration and
Application. 14th International Conference on Conceptual Structures, ICCS 2006,
Aalborg, Denmark, July 2006, Proceedings. In Henrik Schärfe, Pascal Hitzler, P.Ø.,
ed.: Conceptual Structures: Inspiration and Application. 14th International Con-
ference on Conceptual Structures, ICCS 2006, Aalborg, Denmark, July 2006, Pro-
ceedings. Volume 4068 of Lecture Notes in Artificial Intelligence (LNAI)., Berlin,
Heidelberg, Springer-Verlag (2006)


