The Extended MdF model

Ulrik Petersen

November 30, 1999

Abstract

The MdAF text database model was developed by Crist-Jan Doedens in his
1994 PhD dissertation. It is a general model for storing ezpounded text, i.e.,
text coupled with information about that text. The MdF model is extremely
powerful, is clean, simple, intuitive, and elegant, and has a number of features
which other contemporary text database models, e.g., SGML, do not have.

In this Bachelor’s thesis, we first describe the standard MdF model in
quite a bit of detail. We then go on to detailing the Extended MdF model
(EMdF). The EMdF model has the advantage of being closer to an imple-
mentation of the concepts set forth in the MdF model than the MdF model
itself. We then give some hints on how to implement the EMdF model in an
actual database. Finally, we develop, motivate, and explain MQL, a query
language which can be used to query EMdF databases. The exposition on
the MQL language constitutes the bulk of the thesis.

Contents

1 Introduction 8
1.1 Introduction 8
1.2 The standard MdF model 8
1.3 The Extended MdF model 8
1.4 Implementing the EMdF model 8
1.5 MQL-Mini QL 9
1.6 Conventions 9

2 The standard MdF model 10
2.1 Imtroduction 10
2.2 On text-databases generally 10

2.2.1 Text-dominated databases, expounded text 10
2.2.2 What is a database model? 11
2.2.3 Demands on a text database model 11

2.3 Gentle introduction to the MdF model 13
2.3.1 Keyconceptso 13
232 Anexample oL 13

24 Monads 14
241 Generalo Lo 14
2.4.2 Application of monads to text flows 14

2.5 Objects, object typeso o 15
2.6 Features 16
2.7 Extending the basic framework 16
2.7.1 Introduction. 16
2.7.2 Some special types: all m, any m, pow _m 17
2.7.3 Linear ordering of objects per type 17
2.7.4 Ordinal of an object, objectid 18
275 Part_of overlap L. 18
2751 Part ofol 18

2,752 Overlap oL 18

2.7.6 Covered by and buildable from 19
2.76.1 Coveredby 19

2.7.6.2 Buildable from 20

CONTENTS 2

2.8

3 The
3.1
3.2
3.3

3.4

3.5

3.6

3.7

2.7.7 Consecutive, gaps 20

2.771 Consecutive oL 20

2772 Gaps 21
2.7.8 Border, separated, insideo 22

2781 Border 22

2.7.82 Separated 22

2783 Inside 22
Conclusiono 22
Extended MdF model 23
Introductiono L o 23
Short introduction to the EMdF model 23
Monads 24
3.3.1 Imtroduction. 24
332 monad ml 24
3.3.3 monad d, mdm, mmd, mdo, mdstarthere 25
334 max ml 25
Objects e 25
3.4.1 Introduction. 25
3.4.2 Objects are not unique in their monads 25
343 object_ m 26
344 object_d ... 26
345 object dm 26
346 objectids oL 26

3461 objectid d.. 0oL 26

34.6.2 objectid m 27

3.4.6.3 linear ordering of objects per types 27

3.4.6.4 object ordinal, objectid o 27
347 Oumonads() 27
3.4.8 Ofirst(),Odast() L. 27
Object types L 28
3.5.1 Introduction. 28
352 type m ... 28
353 type d ... 28
354 type id ... 28
355 dnst ..o 28
Features 29
3.6.1 Introduction. 29
3.6.2 feature mo 29
3.6.3 feature value d 29
3.64 feature info d o000 29
3.6.5 feature id. oo 29
Enumerationso 29

3.71 Introduction. 29

CONTENTS

3.7.2 enum constant name, enum_constant value
373 enum info d. 0oL
3.74 enum id,enum index
3.8 Values e
3.8.1 Introduction.
3.8.2 Integer, String
3.83 Enumerations Lo
3.9 Conclusion.
Implementing the EMdF model
4.1 Introduction L
42 Setsofmonads Lo o oL
421 Introduction.
422 Monad_Set Element
423 Set_of monad ms
4.23.1 Introduction
4232 Invariant
4.2.3.3 Uniqueness
424 Operations on sets of monad ms:.
4.3 Specific object dclasses 0oL
431 Introduction.
432 monad d
433 object_ dm
434 seq d
435 inst_d o
43.6 feature value d
4.3.7 feature_info d L oo
438 type d ...
439 enum info d o o oo
4310 root_d. . ..o
4.4 Algorithms
441 Introduction.
4.42 Insertion of monads
443 Deletion of monads
4.44 Insertion of objects oL,
4.4.5 Deletion of objects 0oL
45 Conclusion.o
MQL - Mini QL
5.1 Introduction
0.2 Motivationo
5.3 The notion of ‘topographic languages’
5.4 Preliminary definitionso 000

54.1 Universe

30
30
30
30
30
31
31
31

32
32
32
32
32
32
32
33
34
36
37
37
37
38
38
38
39
39
39
40
40
41
41
41
42
43
44
45

CONTENTS 4

54.2 Substrate oo 48
5.5 Changes from Doedens’ work 48
5.6 Informal introduction to MQL by means of some examples . . 49
5.6.1 Introduction. 49
5.6.2 A query does not match the whole database 50
5.6.3 ‘topograph 50
564 features oo 50
5.6.5 object block,object block first 51
5.6.6 power block 0oL 52
5.6.7 opt gap block00 52
5.6.8 wvariableso o oo 593
5.7 Sheaf 54
5.7.1 Introduction. o4
572 Grammar 54
5.7.3 Explanation o0 oo 54
5.7.3.1 matched object 55
5732 straw 55
5733 sheafo 56

5.7.3.4 Correlation of sheaf-structures and MQL-structures 56
574 Setsaslists 0oL a7
5.8 An architecture for an MQL query engine 57
59 MQL e 57
59.1 Datatypeso 57
592 Lexicalrules. 58
593 Grammar 58
5.9.4 The concatenation operators 60
595 MQL variables 60
5.9.5.1 Introduction 60
5952 Naming, 60
5953 Usage 61
59.54 Typing 61
5.9.6 MQL needs to be compiled 61
5.9.6.1 Introduction 61
5.9.6.2 Scope-rules 62
5.9.6.3 Type-checking of object types. 62
5.9.6.4 Type-checking of feature name 62
5.9.6.5 Type-checking of variable usage 62
5.9.6.6 Non-assigned variables 62
5.9.6.7 Only one variable assignment 62
5.9.6.8 Variable usage only within its blocks 62
5.9.6.9 Usage of “first” 62
5.9.6.10 Usage of “last” 63
5.10 State 63

5.10.1 Introduction 63

CONTENTS 5

5.11

5.10.2 Operations on a state 63
5.10.3 Hints on implementation 64
The Retrieval Functions R 64
5.11.1 Introduction. 64
5.11.2 Arguments to the functions 64
5.11.3 topograph 65
5.11.3.1 syntax Lo 65
5.11.3.2 semantics L. 65
5.11.3.3 explanation 65
5.11.4 blocks 66
5.11.4.1 syntax Lo 66
5.11.4.2 semantics 66
5.11.4.3 explanation 67
5.11.5 variable declarations 67
5.11.5.1 syntaxo 67
5.11.5.2 semantics L. 67
5.11.5.3 explanation L. 68
5.11.6 Restrict Lo 68
5.11.6.1 semantics 68
5.11.6.2 explanation 68
5.11.7 join 69
5.11.7.1 semantics 69
5.11.7.2 explanation 69
5.11.8 block string L. 69
9.11.8.1 syntaxo 69
5.11.8.2 semantics 70
5.11.8.3 explanation L. 71
5.11.9 power e 73
5.11.9.1 syntaxo 73
5.11.9.2 semantics 73
5.11.9.3 explanation, 73
5.11.10block _str 74
5.11.10.1syntaxo 74
5.11.10.2 semantics 74
5.11.10.3 explanation 76
5.11.11retrieval o 7
5. 11.11.1syntaxo 7
5.11.11.2 semantics 78
5.11.11.3 explanation 78
5.11.12first_last oL 78
0.11.12.1syntaxo 78
5.11.12.2 semantics 78
5.11.12.3 explanation 79

5. 11.13hato 79

CONTENTS 6

5.11.13 1 syntaxo 79
5.11.13.2 semantics L. 79
5.11.13.3 explanation L. 79
5.11.140object_block first 80
51114 1syntaxo 80
5.11.14.2 semantics 80
5.11.14.3 explanation 82
5.11.15my_blocks 84
5. 11.15.1syntaxo 84
5.11.15.2 semantics Lo 84
5.11.15.3 explanation 84
5.11.16rest_of block str, .. 84
5.11.16.1syntaxo 84
5.11.16.2 semantics Lo 84
5.11.16.3 explanation 87
5.11.17block 89
5. 11.17.1syntaxo 89
5.11.17.2 semanticso 89
5.11.17.3 explanation L. 89
5.11.180pt_retrieval Lo 90
51118 1syntax 90
5.11.18.2 semantics 90
5.11.18.3 explanation L. 90
5.11.190pt_gap_blocko 91
5.11.19.1syntax 91
5.11.19.2 semantics 91
5.11.19.3 explanation L. 91
5.11.201ast L 92
5.11.20.1syntax 92
5.11.20.2 semantics 92
5.11.20.3 explanation L. 92
5.11.21object_block 92
5.11.21.1syntax 92
5.11.21.2 semantics 93
5.11.21.3 explanation 94
5.11.22features 95
5.11.22.1syntaxo 95
5.11.22.2 semantics 96
5.11.22.3 explanation 96
5.11.23 variable assignments 96
5.11.23.1syntax 96
5.11.23.2 semantics 97
5.11.23.3 explanation 97

5.12 Conclusion e 97

CONTENTS

6 Conclusion
6.1 Conclusion

Chapter 1

Introduction

1.1 Introduction

This chapter introduces this bachelor thesis by describing the topics of each
of the chapters. We also give some conventions used in the thesis.

1.2 The standard MdF model

The standard MdF model was developed by Crist-Jan Doedens in his 1994
PhD dissertation. It is a database model for text databases. In this chap-
ter, we introduce the standard MdF model as detailed in Doedens’ book.
Specifically, we explain Doedens’ thirteen demands on text databases, and
give definitions of the concepts of the MdF model. These concepts include
“monad”, “object”, “object type”, and “feature”. We also introduce a lot of
useful concepts which grow naturally out of these four concepts.

1.3 The Extended MdF model

The Extended MdF model (EMdF) is my attempt to make the MdF model
less abstract and thus more implementable. In this chapter, we define and
name a lot of concepts which are useful when talking about EMdF databases
and their implementation. The main contribution is to distinguish between
concepts “in the abstract” and concepts “in the implementation”. We also
define a lot of new concepts which are useful when implementing an EMdF
database.

1.4 Implementing the EMdF model

In this chapter, we give a lot of hints on how to implement an EMdF database
engine, specifically with a view towards also implementing an MQL query

CHAPTER 1. INTRODUCTION 9

engine. The three main sections of the chapter involve the all-important
concept of a set of monads, various specific classes of objects that need to be
stored in an EMdF database (not just EMdF objects, but also housekeeping
objects), and four algorithms for the insertion and deletion of monads and
objects.

1.5 MQL - Mini QL

This chapter represents both the bulk of the work done for the thesis and
the bulk of the thesis itself. MQL is a stripped-down version of the QL query
language defined in Doedens’ work. Thus MQL builds on the concepts set
forth in Doedens’ QL. As a totally new contribution, I have furnished MQL
with a semantics which is given in the form of an operational, syntax-driven
specification in a high-level language. The chapter discusses the sheaf, which
is the datastructure which holds a query result of an MQL query. It also
discusses the syntax of MQL and the constraints upon the syntax. MQL
variables are discussed at some length, and many good reasons are given
why MQL should be compiled into an Abstract Syntax Tree. A sketch of
an architecture for an MQL engine is given. Last, but definitely not least,
we give the semantics of MQL in the form of retrieval functions and their
explanation.

1.6 Conventions

Standard conventions for mathematical notation is used throughout this the-
sis. In addition, some thesis-specific conventions are used:

e Literals are given in typewriter font. E.g., first.
e Syntactic units are also given in typewriter font. E.g., firstlast.

e Code and code-variables are also given in typewriter font. E.g.,
begin, Sm.

Chapter 2

The standard MdF model

2.1 Introduction

The MdF model was developed by Crist-Jan Doedens in his 1994 PhD dis-
sertation. It is a database model which is exceptionally well suited to storing
linguistic analyses of text. The MdF model gives a high-level view of text
databases, where a text database is viewed as text plus information about
that text. The MdF model is mathematically clean, simple, intuitive, and
elegant, which makes it well suited to conceptualization of solutions to prob-
lems which can be solved by a text database.

This chapter gives an introduction to the standard MdF model. The
introduction is based heavily on Chapters 2 and 3 in Doedens’ book, and
follows the same structure.

The bibliographic information for Doedens’ PhD dissertation is:

Doedens, Crist-Jan [Christianus Franciscus Joannes|. Text Databases.
One Database Model and Several Retrieval Languages. Language
and Computers, Number 14. Amsterdam and Atlanta, GA: Edi-
tions Rodopi Amsterdam, 1994. Extent: xii + 314 pages. ISBN:
90-5183-729-1.

2.2 On text-databases generally

2.2.1 Text-dominated databases, expounded text

Two concepts are a key in understanding the state of the art in text databases.
I here give two quotes from Doedens:

Text-dominated databases are “collections of data, predominantly com-
posed of characters, in which we can perceive structure” (p. 18). This is the
current viewpoint on databases of text.

Expounded text is “An interpreted text, i.e. a combination of text and
information about this text, stored in a computer, and structured for easy

10

CHAPTER 2. THE STANDARD MDF MODEL 11

update and access” (p. 19). The MdF model embodies the idea of expounded
text.

2.2.2 What is a database model?

Doedens defines a data model or database model as

“a toolbox of concepts which can be used to describe the handling
by the computer of data in certain domain(s). The concepts
should allow easy formulation by humans of the structuring and
handling of the data in the domain(s). The concepts can be
grouped as follows:

e The data structures supported by the model

e The access language. This language, or set of languages
should allow the definition of the structure and types of
the data and allow creation, insertion, change, deletion and
retrieval of the data.” (p. 23)

The MdF model is not a full database model, in that it does not specify an
access language, but only the data structures supported by the model. This,
a database model without its access language component, is what Doedens
calls a static database model.

2.2.3 Demands on a text database model

Doedens says:

“The fundamental requirement for a text database model is that
it should be able to support the structural description of a text
and its associated annotations.” (p. 25)

He then lists thirteen demands which he percieves should be set on text
database models:

D1. Objects: We should be able to identify separate parts of the
text.

This can be realized with instances of the concept of objects.

D2. Objects are unique: Each object should be uniquely identifi-
able.

Otherwise, we may not know what we are talking about.

CHAPTER 2. THE STANDARD MDF MODEL 12

D3.

D4.

D5.

D6.

D7.

DS8.

D9.

D10.

Objects are independent: Each object in the database should
exist without direct reference to other objects.

The advantage of having this is that we can have the best of two worlds:
Independence and dependence, isolation and referentiality. The inde-
pendence comes from D3 being met, and the dependence can arise
through D4-D7 being met.

Object types: We need ‘object types’: we should be able to
assign the same generic name to like objects.

For example, we would like to be able to identify certain parts of a
book stored in a text database as “paragraphs”, other parts of a book
as “chapters”, and other parts as “pages”.

Multiple hierarchies: It should be possible to have different
hierarchies of types.

For example, we might have a hierarchy of types which form a textual
hierarchy (‘character’; ‘word’, ‘line’, ‘page’, ‘book’), and a hierarchy of
types which form a logical hierarchy (‘word’, ‘sentence’, ‘paragraph’,
‘chapter’).

Hierarchies can share types:

See D5 for a useful example.

Object features: We should be able to assign features and
values for these features to objects.

Acommodation for variations in the surface text: E.g. varia-
tions in spelling should be attributable to the same words in
the surface text.

Overlapping objects: We need objects of the same type to be
able to overlap.

For example, to describe recursivity in linguistic phenomena. Take for
example the string of words, ‘A noun phrase and a conjunction phrase’:
How do we analyze this? As two noun phrases (“A noun phrase” and
“a conjunction phrase”) conjoined by a conjunction (“and”), or as one
compound noun phrase (the whole thing)? We want to be able to
represent both choices. Overlapping objects of the same type can help
us in doing this.

Gaps: We need objects with ‘gaps’.

For example to describe clauses which are discontiguous, as in “John,
who was having a cow, freaked out.”, where “John ... freaked out” is a
discontiguous clause.

CHAPTER 2. THE STANDARD MDF MODEL 13

So far, the demands have dealt with the data-structures to support the
model. The following demands reflect the demands which a full model (one
in which there is also an access language) must meet:

D11. Type language: We need a type language in which we can
specify object types and the types of their features.

D12. Data language: We need a strongly typed data language in
which we can specify the creation, insertion, change, deletion,
and retrieval of data.

D13. Structural relations between types: It should be possible to
specify standard structural relations between objects of dif-
ferent types.

None of the text database models available today satisfies these 13 demands.
The MdF model satisfies D1-D10. In contrast, SGML does not, and neither
do any of its derivatives, e.g.. XML.

2.3 Gentle introduction to the MdF model

2.3.1 Key concepts
The MdF model has four key concepts:

1. Monads: These are the basic building blocks of the database. They
are simply integers. Monads are ordered relative to each other, such
that a string of monads emerges.

2. Objects: Objects are made of monads. An object is a set of monads.

3. Object types: Objects are grouped in types. An object type determines
what features an object has.

4. Features: A feature is a function on objects. A feature takes an object
as its argument and returns some value usually based on that object.

2.3.2 An example

An example of an MdF database can be seen in figure 2.1 on page 14. It
has five object types: Word, Phrase, Clause atom, Clause, and Sentence.
Object type Word has two features: surface, and part of speech. Object
type Phrase has one feature: phrase type. Object types Clause atom,
Clause, and Sentence have no features. The first Phrase object consists of
the set of monads {1,2}, the third of the set of monads {4}, and the fourth
of the set of monads {5,6,7}. The first Clause object consists of the monads

CHAPTER 2. THE STANDARD MDF MODEL 14

1 2 3 4 5 6 7 8 9

Word 1 2 3 4 5 6 7 8 9

surface The door, | which opened | towards | the East, | was | blue.
part_of_speech def.art. noun | rel.pron.| verb prep. def.art. noun | verb | adject.

Phrase 1 2 3

phrase_type

phrase_type

Clause_atom 1 2 3
Clause 1 2 1
Sentence 1

Figure 2.1: MdF example

{1,2,8,9}. Note that the first Word object consists of the set of monads
{1}, and s not monad 1, and likewise with the rest of the Word objects.

2.4 Monads

2.4.1 General

The MdF model was developed for text databases, but can be used for storing
anything that is linear in nature, e.g., DNA sequences. The backbone of
an MdF database is a linear string of minimal, indivisible elements, called
monads. The precise nature of the entities which the monads represent is
of no importance to the model. The only thing that matters is the relative
ordering of the monads.

A monad is simply an integer. It represents the rank number in the string
of monads, starting from 1. Since monads are integers, we can apply all the
usual relational and arithmetic operators to them. For example, if we have
monads a and b, we can test whether a < b, a = b, or a > b. Or we can test
whether a + 3 = b.

2.4.2 Application of monads to text flows

In everyday thinking about text, any given text is conceptualized as a one-
dimensional string. The text may be laid out on a two-dimensional medium,

CHAPTER 2. THE STANDARD MDF MODEL 15

e testament
e book

e chapter
e verse

e word

e phrase

e clause

e sentence

Table 2.1: Sample Object types

e.g., paper, but there is still only one string. The elements in this string have
an ordering called the reading order. For example, the English reading-
order is left-to-right, line-by-line, downwards. The Arabic reading-order is
different, and the Japanese reading-order is different yet again. From the
point of view of the MdF model, the reading-order is dictated by the monads.

The MdF model has no concept of parallel or unrelated text flows, e.g.,
footnotes or margin notes vs. the main text. Fortunately, this is not a prob-
lem, since the object types allow us to direct attention to any text flow at
will. For example, the implementer of an MdF database might decide to in-
tertwine the main text and the footnotes. The text is then called “footnote”
or “main text” simply by defining appropriate object types and defining its
objects appropriately. For an MdF database with several books, it might be
more intuitive to place each book after the other, defining an object type
called “book” and defining its objects appropriately.

2.5 Objects, object types

An MdF object is a set of monads. The monads in this set need not be
contiguous. This is a great advantage, since it allows us to have objects with
gaps.

Objects are grouped in types. For a sample list of object types which
might occur in an MdF database, look at table 2.1.

It is an important characteristic of objects that no two objects of the
same object type may consist of the same monads, i.e., there must not be
two objects of the same object type for which there is set equality between
the two sets of monads. The reason for this restriction is that it gives us a
simple and clear criterion for what different objects are: An object is unique

CHAPTER 2. THE STANDARD MDF MODEL 16

in its set of monads. On the other hand, two objects of different types may
consist of the same monads. And two objects of the same type may share
monads, so long as their sets of monads are not identical.

Note that objects do not consist of other objects. Instead, objects consist
of monads. This is a great advantage, since it allows us to specify multiple
hierarchies.

The fact that objects are sets of monads gives rise to a rich set of descrip-
tive terms, which can all be formulated in terms of the basic operators on
sets, such as set equality, the subset relation, set intersection, set union, and
the “member of” relation. Also, the fact that there is an ordering, <, on the
monads gives rise to a number of interesting properties. We shall return to
these properties in section 2.7 when discussing concepts related to the MdF
model.

2.6 Features

A feature is a function taking one argument: An object. The object type
of an object determines what features the object has. The domain (type of
argument) of a feature function is the set of objects of a given object type.
The codomain (type of return value) of a feature function can be anything:
The MdF model puts no restrictions on the codomain. This allows the
implementor to implement anything at all which he or she might feel should
be a feature. For a list of sample features which might be present in an MdF
database, look at table 2.2.

In particular, the codomain of a feature can be another function taking
other arguments, thereby in effect producing a feature with arguments.

Features can be partial functions, i.e., there can be objects for which a
feature’s value is not defined.

There is no such thing as a “genuine” feature. All features are considered
to have equal status from the point of view of the MdF database. For
example, the feature returning the surface of a word has the same status as
a feature that returns the sum of the monads in its argument object.

2.7 Extending the basic framework

2.7.1 Introduction

This section is almost a duplicate of section 3.6 in Doedens’ book, but leaving
out some explanations, examples, justifications, and a few concepts which
are irrelevant to the understanding of EMdF.

Throughout this section, we will refer to figure 2.1 on page 14.

CHAPTER 2. THE STANDARD MDF MODEL 17

‘ Object type ‘ Feature name ‘ Feature function
book book name maps a book object to its name
book book number maps a book object to its number
chapter chapter number | maps a chapter to its number
word lemma maps a word to its lemma
word Friberg tag maps a word to its Friberg grammar tag
word part _of speech | maps a word to its part of speech
word case maps a word to its case (if applicable)
word gender maps a word to its gender (if applicable)
word number maps a word to its number (if applicable)
phrase phrase type maps a phrase to its type (e.g., VP, NP)
phrase arthricity maps a phrase to its status as being arthrous
phrase function maps a phrase to its function (e.g., Subj, Obj)
phrase determinedness maps a phrase to its status as determined or not
clause clause type maps a clause to its clause type
clause function maps a clause to its function

Table 2.2: Sample features

2.7.2 Some special types: all m, any m, pow_m

Any MdF database implicitly defines the object types all _m, any m, and
pow_m. The reason for this is that it is convenient when talking about MdF
databases.

All _m is the object type which has just one object: The one consisting
of all monads in the database.

Any_m is the object type which has for each monad one object consisting
of that monad.

Pow _m is the object type which has a member for each member of the
powerset of the monads.

None of these three special object types has any application-specific fea-
tures.

2.7.3 Linear ordering of objects per type

The linear ordering of objects per type is based on a ‘lexicographic’ ordering
of the monads. This is done using the smallest monad as sort key. If this
gives a tie, we go on to the next smallest, the next smallest, and so on. If
at any point object O9 has a monad which object O does not, then object
O is stipulated to have the smaller ordinal of the two. For any object type
T, the ordering relation within the type is denoted <p. Thus, for example,
if we have an object type T' , then these relations hold:

(1} <r {1,2)

{1,3} <r {1,2}

CHAPTER 2. THE STANDARD MDF MODEL 18

{1,3,4,5} <r {1,3,4,5,6)
{1a273a475a677} <r {2}
{314} <r {576}

2.7.4 Ordinal of an object, object id

The linear ordering of objects per type can be used to assign ordinals to
objects of a given type. We just assign the ordinal 1 to the first object in
the linear ordering, and go on from there.

This means that objects can be identified by their type plus their ordinal.
Alterntively, since objects are unique in their monads, they can be identified
by their type plus their monads. Both ways of identifying an object can be
useful.

When identifying objects by their type plus their ordinal, the resulting
id is called an object id _o. For example, objects of type T' might be called
T-1, T-2, T-45, etc.

When identifying objects by their type plus their monads, the resulting
id is called an object id m. For example, objects of type T might be called
T-{1,2,3,5}, T-{4}, etc. Object id m’s are most useful for the three special
object types, all m, any m, and pow_m, since they are specifically defined
in terms of monads. There is also a practical reason for the usefulness of
object id _m’s: If we have a database of 138,019! monads, the object id o’s
of the pow__m object type range from 1 to 238919 which would take on the
order of 138,019 bits to implement - something which is clearly intractable.

2.7.5 Part_of, overlap
2.7.5.1 Part_of

The subset relation gives rise to a relation between objects which is quite
crucial in building hierarchies. Take two objects, Oy and Os.

Op part_of O <= 07 C 0Oy

Thus if the monads of O; are all in the set of monads comprising Os,
then O is part_of Os.

In our example figure on page 14, Phrase-5 is part_of Phrase-4. Phrase-2
is part__of Clause atom-2.

2.7.5.2 Overlap

Objects can share monads. The notion of overlap formalises this idea. This
notion is expressed in terms of the set intersection operator. If the inter-

!The number of words in the Greek New Testament as published in the Nestle-Aland
27" edition is 138,019.

CHAPTER 2. THE STANDARD MDF MODEL 19

section of the monads of two objects is non-empty, then they share monads,
and are thus overlapping. Take two objects, O; and O,.

O1 overlaps with Oy <= O1NO0y #

In our example figure on page 14, Phrase-5 overlaps with Phrase-4.
Phrase-5 does not overlap with Phrase-6. Clause atom 2 overlaps with
Sentence-1.

Object types can also said to be overlapping or non-overlapping:

An object type is overlapping if and only if some of its objects overlap.

An object type is non-overlapping if and only if it is not overlapping.

In our example figure on page 14, only the Phrase object type is overlap-
ping. The rest of the object types are non-overlapping.

It could be made part of the type-system of a full database model based
on the MdF model that one could specify that a given object type was
overlapping or non-overlapping, and, in the latter case, uphold this constraint
automatically when attempting to add objects of this type.

2.7.6 Covered by and buildable from

In some applications, we want certain object types to form a hierarchy.
For example, sentences may be formed from words, and paragraphs may
be formed from sentences.

Since objects are made of monads, not other objects, we need some way
of specifying hierarchies. This is done using the notions covered by and
buildable from. These notions are, in the MdF model, only extensional
in nature, i.e., only by inspection can we decide whether an object type is
covered by or buildable from another. It could, however, be made part of
the type system in a full database model based on the MdF model, such that
constraints could be upheld when adding or deleting objects.

Despite their names, these two notions are not opposites of each other.
Rather, buildable from expresses the same as covered by, only with an
additional constraint.

2.7.6.1 Covered by

An object type Tig, is covered by object type T, if and only if the
union of all the monads in all the objects of the set of objects of Tign has
set equality with the union of all the monads in all the objects of the set of
objects of Tiow, AND for all objects Op;gn of Thign there exists a set of objects
S of Tjow such that the monads of the union of all the objects in S are the
same as the monads of Oyign, AND for all objects Ojoy of Tioy, it is the case
that there exists exactly one object Oyg of Thign such that Oy part_of Op,.

Note that the name ‘covered by’ is slightly counter-intuitive: It is the
larger that is covered by the smaller, not the smaller that has the larger as
a canopy over it.

CHAPTER 2. THE STANDARD MDF MODEL 20

Doedens says in his book (p. 70) that covered by induces a partial or-
dering on objects types. This is not true: As a counterexample, the following
setup makes covered by fail to be antisymmetric: Suppose that we have an
MdF database with just three monads and just two object-types, T7 and T5,
and suppose that both 77 and 75 have only one object: The one consisting
of the monads {1,2,3}. Then T is clearly covered by T, and T, is clearly
covered by Ty, yet Ty # Ts.

In our example figure on page 14, Phrase is covered by Phrase and
Word, Clause atom is covered by Clause atom, Phrase and Word, and
Clause is covered by Clause, Clause atom, Phrase, and Word. Sentence is
covered by everything.

2.7.6.2 Buildable from

We sometimes want to say something that is a little stronger than that two
object types are in a covered by relationship. We sometimes want to specify
that the two object types are non-overlapping as well.

An object type Tj,p is buildable from object type i, if and only
if Thign is covered _by Tiow, AND both Ti;en and Tioy are non-overlapping.

Doedens notes in his book that buildable from induces a partial ordering
on object types that are non-overlapping. This is, of course, not true, since
covered by is not a partial order.

In our example figure on page 14, the only object type that is not build-
able from something is Phrase, since it is overlapping.

2.7.7 Consecutive, gaps
2.7.7.1 Consecutive

Basically, two objects are consecutive if they follow each other in a neat row
without any gaps in between. This is the heart and soul of text representa-
tion.

However, sometimes it is handy to exclude certain parts of the database
from consideration. For example, in our example figure on page 14, we may
wish to concentrate on “The door, ..., was blue” as embodied in Clause-1.
We say that “was blue” is consecutive to “The door,” with respect to the set
of objects constituting Clause-1. We call Clause-1 the “Universe”. Note that
this usage of “Universe” is closer to the usage of “Substrate” which will follow
later than to the later usage of “Universe”.

In order to formally define the notion of consecutive, we first need a
definition of a range:

Definition: A range of monads is denoted by a .. b, and has the following
meaning: If b < a, then the range is empty. If b > a, then the range

CHAPTER 2. THE STANDARD MDF MODEL 21

denotes the set of monads starting at a and including all monads up
to and including b.

For example, “1..3” denotes the set {1,2, 3}, while “3..2” denotes (.

Definition: A set of n monads, M, where n > 2, is consecutive with respect
to a set of monads, U, if, when ordering the elements of M according
to ‘<’, such that my < ... < my, for all 4, 1 <4¢ <mn — 1, it holds that
(m; +1.mip; —1)NU = 0.

Definition: A set of n objects, S, where n > 2, is consecutive with respect
to a set of monads, U, if the objects can be ordered as Oy, ..., O, such
that for all 4, 1 <4 < n — 1, it holds either that (O; =0V O;11 = 0)
or (i.e., exlcusive or) the set consisting of the last monad of O; and the
first monad of O;41 is consecutive with respect to U.

2.7.7.2 Gaps

As we have seen, objects need not consist of a contiguous string of monads.
For example, in our example figure on page 14, Clause-1 consists of “The
door, was blue.”. There is a gap in Clause-1 with respect to “The door,
which opened towards the East, was blue.”.

An object is said to have gaps if its monads are not consecutive. The
monads of a gap in an object are not part of the object. Furthermore,they
are not outside of the object, i.e., all of the monads in a gap in an object
O are both > the first monad of O and < the last monad of O. Gaps are
always “maximal”, i.e., we group as many monads as possible into a gap.

Definition: A gap in an object O with respect to a set of monads U is a
set of monads, H, such that:

1. H# (0 AND

2. H is consecutive with respect to U AND

3. = (H overlaps with O) AND

4. Yh; € H.h; > O.first() A hiy < O.last() AND

5. VH' gap in O with respect to U. H' C H (i.e., H is maximal)

where O.first() and O.last() refer to the first and last monad of O, respec-
tively.

CHAPTER 2. THE STANDARD MDF MODEL 22

2.7.8 Border, separated, inside
2.7.8.1 Border

An object always has a first and a last monad (which is a consequence of
the well-formedness axiom for natural numbers). The first monad of an
object is called its left border, and the last monad of an object is called its
right border. Together, the left border and the right border of an object
constitute its borders. Two notions that can be defined in terms of the
borders of objects are “separated” and “inside”.

In our example figure on page 14, the left border of Phrase-4 is 5, and its
right border is 7. The left border of Phrase-2 is the same as its right border,
namely 3. The left border of Clause-1 is 1, and its right border is 9.

2.7.8.2 Separated

Two objects are separated if and only if the right border of one of the objects
is < the left border of the other. Thus even if we add the gaps in the objects
to the objects, they still do not overlap.

In our example figure on page 14, Word-3 and Phrase-3 are separated.
Phrase-3 and Phrase-4 are separated. Clause-1 and Clause-2 are not sepa-
rated.

2.7.8.3 Inside

An object Oy is inside O, if and only if the left border of Oy is < the left
border of O; and the right border of Oy is > the right border of O;. Note
that, even though an object is inside another object, they need not overlap,
since objects may have gaps.

In our example figure on page 14, Phrase-5 is inside Phrase-4. Clause-2
is inside Clause-1. Word-4 is inside Clause-2.

2.8 Conclusion

In this chapter, we have presented, in condensed and abridged form, Doedens’
work as it applies to demands on text databases and to the MdF model itself.
Not much has been original in this chapter. We have touched upon text-
dominated databases and expounded text, upon what constitutes a database
model, and upon Doedens’ thirteen demands on a text database model. We
have given a gentle introduction to the MdF model, followed by in-depth
discussions of the four key concepts of the MdF model. We have then defined
a lot of useful concepts in relation to the four basic concepts in the MdF
model.

Chapter 3

The Extended MdF model

3.1 Introduction

In this chapter, we motivate and develop the Extended MdF model (EMdF).
It is basically the standard MdF model with a few enhancements. We shall
explicitly say when something in the EMdF model diverges from the MdF
model, but we shall not explicitly say it when something is an obvious ex-
tension to the MdF model.

We begin by giving a short introduction to the EMdF model, in which the
philosophy of the EMdF model is explained and a few important concepts
introduced. We then go on to detailing the changes and additions that the
EMdAF model makes to the MdF model as it applies to monads, objects, ob-
ject types, features, enumerations, and values. Finally, we give a concluding
section.

3.2 Short introduction to the EMdF model

The EMdF model builds on top of the MdF model a structure of concepts
that makes it easier to implement the model. The EMdF model does not
remove any functionality of the MdF model'. Rather, it extends the func-
tionality slightly. Hence the “Extended” predicate.

The EMdF model assumes some sort of Object Oriented Database Man-
agement System (OODBMS) for its implementation. One of the key features
that such an OODBMS must have is that it must be able to assign unique
object ids to objects. Furthermore, These object ids must have some order-
ing on them, e.g., if they are integers, then the “less than” ordering. Other
than that, it is assumed that the OODBMS supports lists of values, and that
these values can be object ids or anything else.

The most obvious difference between MdF terminology and EMAF ter-
minology is that EMdF terminology makes a distinction between abstrac-

'Except for putting restrictions on the codomain of features.

23

CHAPTER 3. THE EXTENDED MDF MODEL 24

tions (such as “object”) and their implementation. In the EMdF model, the
abstractions are often suffixed with “ m”, whereas the concrete implementa-
tion is often suffixed with “ d”. For example, there is a distinction between
“objects” in the “MdF sense”, which in the EMdF terminology become “ob-
ject _m’s”, and “objects” as seen from the viewpoint of the OODBMS, which
are called “object d’s”. Thus some object d’s implement object m’s, but
there are object d’s with no object m counterpart.

The object ids assigned by the OODBMS to object d’s are called object
id_d’s.

3.3 Monads

3.3.1 Introduction

Monads are treated differently in the EMdF model than in the basic MdF
model. In the EMdF model, there are two concepts which are both named
“monad” monad m’s and monad d’s.

Monad m’s are the EMdF name for MdF monads. Thus they are inte-
gers with two functions:

1. They are the substance out of which objects are built, and

2. They keep track of the sequence of text.

Monad d’s are object d’s in the database which correspond to monad m’s.
They have a special structure which is used when querying and updating the
database.

We begin by describing the concept of a monad m. We then go on to
describing the concept of a monad d as well as four functions on monad d’s.
Finally, we define the concept of the max m.

3.3.2 monad m

“Monad m” is the EMdF name for an MdF monad . The reason for having a
distinct name for this concept is that it is convenient to be able to talk about
“abstract” monads, as opposed to the concrete implementations of structures
in the database which correspond to monads.

In the EMdF model, the string of monad m’s starts at 0, not at 1 as
in the MdF model. This is because 0 is the “real” bottom element of the
natural numbers, thus rendering the EMdF model slightly more “clean” than
the MdF model. Besides, having the first monad m be 0 simplifies imple-
mentation slightly.

CHAPTER 3. THE EXTENDED MDF MODEL 25

3.3.3 monad d, mdm, mmd, mdo, mdstarthere

A monad _d is an object d. It represents a monad m.

There are a number of functions associated with a monad d. They are:
mdm, mmd, mdo, and mdstarthere.

The mdm function takes a monad d and returns the monad m to which
it corresponds.

The mmd function takes a monad m and returns the monad d to which
it corresponds.

The mdo function takes an object type T' and a monad _m m and returns
the set of objects of type T' that contain m.

The function mdstarthere takes an object type T' and a monad m m
and returns the set of objects of type T that start at m. This function is
useful when querying the database.

These functions basically manipulate the contents of a monad d, except
mmd, which must use information outside of the monad d’s if it is to be
implemented efficiently.

There are exactly as many monad d’s as there are monad m’s in the
database.

3.3.4 max m

The string of monads in an EMdF database starts at 0 and ends at max_ m.
Thus there are max m + 1 monads in the database. The number max m
may change over time as more monads are added to the database, or as
monads are deleted from the database.

3.4 Objects

3.4.1 Introduction

In this section, we detail quite a lot of concepts that are useful when talking
about objects. Objects are one of the more important concepts of the MdF
model, and so the EMdF model treats them with care. We first discuss the
important change from the MdF model that objects are not unique in their
monads. We then go on to discussing object m’s, object d’s, object dm’s,
and object id’s. Finally, we discuss some functions on objects, monads, first,
and last.

3.4.2 Objects are not unique in their monads

One very important difference between the MdF model and the EMdF model
is that, whereas the MdF model stipulates that objects are unique in their
monads, the EMdF model makes no such claim. In fact, it explicitly states

CHAPTER 3. THE EXTENDED MDF MODEL 26

that objects need not be unique in their monads. Thus two objects of the
same type may in fact have exactly the same monads.

The reason for this change is that this restriction was found to be cum-
bersome in real applications. It was also found to be unnecessary, given
that:

1. An OODBMS is assumed which can assign object ids uniquely, and

2. For querying purposes, it is not necessary that objects be unique in
their monads.

The latter fact arose out of the process of designing MQL.

3.4.3 object m

The objects of the MdF model are called object m’s in the EMdF model.
The reason for this name-change is that we need to distinguish between
objects in the “abstract” MdF sense and objects stored in the database.
Many objects in the database are not counterparts of object m’s, but are
there for house-keeping.

3.4.4 object d

The objects that are stored in the database are called object d’s. These
objects may or may not correspond to object m’s. It is assumed that each
object d has a unique object id d.

3.4.5 object dm

Object _dm’s are object d’s that correspond to object m’s. Giving them
a special name allows us to refer to them explicitly, and helps in removing
ambiguity when talking about them.

3.4.6 object ids

3.4.6.1 object id d

An object id _d is a unique object identifier given to an object in the database
by the OODBMS. This object id d may be the id of any object in the
database, including housekeeping objects that are not counterparts of objects
in the MdF sense.

Notation: O.id denotes, for the object d O, the object id d of that object.

CHAPTER 3. THE EXTENDED MDF MODEL 27

3.4.6.2 object id m

Object id m’s of the MdF model are not redefined in the EMdF model.
However, it is necessary to realize that, since objects are no longer unique
in their monads, the object id m need not be an id for any other object
types than the special object types all m, any m, and pow m. Thus ob-
ject id _m’s should only be used for these types. For application-specific
object types, the concept of object id m has been supplanted by the con-
cept of object id d. It is assumed that there is some total ordering on the
object id_d’s.

3.4.6.3 linear ordering of objects per types

The concept of linear ordering of objects per type has had to be redifined
slightly from the EMdF model. The reason is that the objects dm’s are no
longer unique in their monads. Thus the concept of linear ordering per type
is now defined as follows. Take an object type T" and two objects of type T,
01 and 021

1. If O1 and Oy do not have the same monads, then linear ordering is
decided as in the MdF model (see section 2.7.3).

2. If O1 and O3 have the same monads, then O7 <p Os iff O1.id < Os.id.

Note that object id _o’s of the three built-in types (all_m, any m, and
pow_m) are not affected by this change, since they never have two distinct
objects with the same monads.

3.4.6.4 object ordinal, object id o

The concepts of object ordinal and of object id o from the MdF model are
not changed in the EMdF model (see section 2.7.4 on page 18). They are
still based on the linear ordering of objects per type.

3.4.7 O.monads()

It is useful to define, on object m’s and object dm’s, a function, monads,
which returns the set of monad m'’s of which the object consists.

Notation: This function with the object _m O as the argument may be
denoted “O.monads()”.

3.4.8 O.first(), O.last()

It is useful to define, on object m’s and object dm’s, functions which return
the left border and the right border respectively. Thus first and last return,
for a given object, a monad m.

CHAPTER 3. THE EXTENDED MDF MODEL 28

Notation: The notational convention O.first() and O.ast() is used to de-
note these functions taken on object O.

3.5 Object types

3.5.1 Introduction

The concept of object types has not changed from the MdF model. However,
a few new concepts have been introduced. These include type m, type d,
type_id, and inst, which we discuss below.

3.5.2 type m

A type m is an object type of an object m “in the abstract”. Thus it is
precisely what is called an object type in Doedens’ book.

3.5.3 type d

A type d is an object d which stores information in the database about a
given type m.

3.5.4 type id

Type_id is an integer uniquely identifying a type m within the context of an
EMdF database. Thus all type m’s have an identifier. For implementation
purposes, this type id could be an object id d of a type d, or it could be
an integer index into some array of type d’s.

3.5.5 inst

In the EMdF model, a special function, inst, is assumed. It is assumed
to be efficiently computable. It takes an object type and a universe as its
arguments and returns an ordered list of object id d’s. This list is sorted
by object ordinal.

A Universe is a contiguous set of monads which starts at some monad m
a and ends at some monad m b, where a < b.

The inst function returns, for a given object type 1" and a given universe
U, all the objects of type T' which are part of U.

Thus inst(7, all_m-1) gives the list of all objects of type T, sorted on
object ordinal.

CHAPTER 3. THE EXTENDED MDF MODEL 29

3.6 Features

3.6.1 Introduction

In this section, we discuss some useful concepts in relation to features.
First we discuss feature m’s, then three implementation-aids called fea-
ture value d, feature info d, and feature id.

3.6.2 feature m

A feature m is a feature of an object m “in the abstract”. Thus it is pre-
cisely what Doedens calls a feature (were it not for restrictions which I later
put on features).

3.6.3 feature value d

A feature value d is an object d in the database which implements the
value of a feature _m when applied to a particular oject, when that value is
stored (as opposed to computed).

3.6.4 feature info d

A feature info d is an object d in the database which implements infor-
mation about a particular feature m type.

3.6.5 feature id

Feature id is an integer which defines a feature uniquely with respect to a
certain object type. Thus a pair (type id, feature id) uniquely determines
which feature is in question.

3.7 Enumerations

3.7.1 Introduction

Enumerations are meant to be a convenient way of naming integers and
grouping them in a type. Thus each enumeration constant has both a value
and a type associated with it.

In this section, we first discuss two concepts relating to actual enumera-
tion constants, enum constant name and enum constant value. We then
discuss an implementation aid called enum info d which gives information
about the type of an enumeration constant. Finally, we discuss two concepts
which can be useful when implementing enumeration constant types, namely
enum_id and enum _index.

CHAPTER 3. THE EXTENDED MDF MODEL 30

3.7.2 enum _constant name, enum_constant value

An enum_constant name is a string of characters which uniquely identifies
a particular enum_constant_value (which is an integer) within an enumer-
ation type.

3.7.3 enum info d

An enum_info dis an object d which stores information about a particular
enumeration type. In particular, it stores some kind of representation of a
mapping between enum constant names and enum constant values.

3.7.4 enum id, enum index

An enum_ id is an integer uniquely identifying a particular enumeration type
within the database. An enum index is some kind of pointer to a map-
ping element in an enum_info d, where a “mapping element” consists of an
enum_constant name and an enum_constant_ value.

3.8 Values

3.8.1 Introduction

I have chosen, for implementation purposes, to restrict the values that a
feature might take on in the EMdF model, to be the following atomic types:

e integer
e string

e ecnumeration constant

The reason for doing this is that, at some point, a design decision like this
has to be taken. Since the EMdF model is meant to be easily implementable,
and to serve as the design playground for an actual implementation that I
am working on, this choice seems to be right. Any other implementation
might wish to implement fewer, more, or other values. But these seem to be
basic.

Object id_d is not included because including them makes it more dif-
ficult to delete objects from the database. Two ways to get around this
could be as follows: One is to delete the transitive closure of objects that
point to each other when deleting an object which has a pointer to another
object. The other is to simply assign the “NULL” object id d to a stored
feature in object B which points to object A, when deleting object A. The
user could be given the choice of which one they wanted. Note that both of

CHAPTER 3. THE EXTENDED MDF MODEL 31

these approaches requires that we keep track of which objects point to each
object.

Binary Large Objects (BLOBs) are not included because they are not
necessary for the application domain for which I am developing EMdF. They
could easily be added.

3.8.2 Integer, String

The integer and string types are well known datatypes in computer science.
Thus I will not comment on them.

3.8.3 Enumerations

Enumerations have been treated above and deserve no further comment.

3.9 Conclusion

In this chapter, we have presented, in abstract form, a lot of concepts which
are useful when implementing an EMdF database. We have given a short
introduction to the EMdF model. We have discussed monads, including the
concepts of monad m, monad d, and max m. We have discussed objects
and how they are affected by the EMdF model. One important change in
the EMdF model from the MdF model is that objects are not unique in their
monads. We have discussed the concepts of object m (which correspond to
MdF objects “in the abstract”), object d (which are concrete objects in the
database, not necessarily corresponding to object m’s), object dm (which
are object d’s corresponding to object m’s), and object ids (which have
not changed from the MdF model: Only the underlying definition of linear
ordering per type has changed). Finally, we have defined some functions on
objects which are useful for implementation.

Chapter 4

Implementing the EMdF model

4.1 Introduction

This chapter gives some implementation details which are suggestions for
how to implement the EMdF model in an actual OODBMS.

4.2 Sets of monads

4.2.1 Introduction

In this section, we introduce two datatypes which constitute an elegant way

of representing sets of monads. First, we circumscribe the Monad Set Element,

which is just a range of monads, a..b. Second, we define a datatype, Set of monad ms,
which is a way of representing a set of monads using Monad Set Elements.

4.2.2 Monad Set Element

We need a datastructure to hold two monads: first and last. The intended
interpretation is that it denotes the range first..last. The invariant is that
first < last. The first and last attributes of a Monad Set FElement mse can
be accessed as mse.first and mse.last.

4.2.3 Set of monad ms
4.2.3.1 Introduction

The Set _of monads is the basic building block of an MdF object m. It can
be implemented as a vector of Monad _Set Elements. The intention is that
the Monad set elements in the vector be sorted, and that there be at least
one monad of “gap” in between each Monad set element. This invariant
(stated more precisely below) gives rise to some very useful properties.

The vector of monad ms of a Set of monad ms A is denoted by
A.monad _ms.

32

CHAPTER 4. IMPLEMENTING THE EMDF MODEL 33

First, we give an invariant on the vector of Monad Set Elements in
a Set_of monad ms. Then, from this invariant, we prove a uniqueness
proposition on the vector, namely that any vector of Monad Set Elements
which adheres to the invariant is the unique representation of a set of monad m’s.
Finally, we give a list of easily implementable operations which one must be
able to perform on a Set of monad ms.

4.2.3.2 Invariant

There is the following invariant on the Monad Set Element’s stored in the
vector:
For all Monad Set Elements mse in the vector, it is the case that:

1. Either

(a) Its predecessor prev is empty (i.e., is not there), OR
(b) prev.last+1 < mse.first,

2. AND either

(a) Tts successor succ is empty (i.e., is not there), OR

(b) mse.last+1 < succ.first

This means:

V mse IN vector: (V prev before mse: prev.last+1 < mse.first) A (V succ
after mse: mse.last + 1 < succ.first)

Here the two nested for-all quantifiers take care of 1(a) and 2(a) by being
vacuously true when prev and succ are not there.
This mathematical predicate captures these two intuitions:

1. All Monad_Set Elements are mazimal, in the sense that they extend
as far as they can without violating the other intuition, which is that

2. The Monad Set Elements are sorted in such a way that, for any two
Monad_Set Element’s A and B, where A is the direct predecessor of
B

7

A last < B.first
which can be strengthened, by intuition 1., to:
Alast + 1 < B.first

which means that there is at least one monad_m in between each Monad _Set Element.

CHAPTER 4. IMPLEMENTING THE EMDF MODEL 34

4.2.3.3 Uniqueness

We will give a detailed proof that two sets of monads are identical if and
only if their representations are identical. The proof rests on the invariant.

Thus the representation of a given set is a unique representation — there
is only one.

Proposition:

Any two Set of monad ms represent the same set of monad m’s if and
only if their monad ms vectors are identical.

Proof:

Take two Set _of monad ms’s A’ and B’. Let A = A’monad ms and B =
B’.monad _ms.

“if”. Assume that the two vectors are identical. Then they trivially rep-
resent the same set.

“only if:* Assume that the two vectors represent the same set. The proof
works by induction on the subscript operator i.

Base case: i=0.

To prove: A[0] = B|0].

Let mseA = A[0] and mseB = BJ0].

Since the two sets are identical, certainly mseA.first = mseB.first, since
this is the first monad of the sets. However, it is also the case that mseA .last
== mseB.last. To see this, consider the invariant given above.

Let mseA’ = A|0+1] and mseB’ = B[0+1].

Now, since the invariant holds, it is the case that

mseA.last + 1 < mseA’ first.
It is also the case that
mseB.last + 1 < mseB’.first.

Assume for the sake of contradiction that mseA.last # mseB.last. As-
sume Without Loss of Generality that mseA.last > mseB.last. Then there
must be at least one monad m in the set represented by A that is not in the
set represented by B. This is because there must be a distance of at least 1
between mseA.last and mseA’ first, as there must be between mseB.last and
mseB’.last.

Thus there is at least one monad m = mseB.last+1 which is not in B but
which is in A. To see this, note that, first, m cannot be in B, since

mseB.last+1 = m < mseB’.first.

Second, note that, since

CHAPTER 4. IMPLEMENTING THE EMDF MODEL 35

mseA . last > mseB.last,
m is in A, since this is equivalent to
mseA.last >= mseB.last+1 = m >= mseB.first = mseA first

Thus, there is a contradiction, and mseA.last = mseB.last. Thus the
base case holds.

Induction step Assume that mseA’ = A[i-1] and mseB’ = BJi-1] are iden-
tical. Specifically, the following holds:

mseA’ first — mseB’ first A mseA’.last — mseB’.last

We wish to prove that mseA = Ali] and mseB = BJi| are identical.

First, we prove that mseA.first = mseB.first. Second, we prove that
mseA.last = mseB.last.

To see that mseA first = mseB.first, assume for the sake of contradiction
that

mseA first # mseB.last.
Assume Without Loss of Generality that
mseA first < mseB.first.
Then there must be at least one monad
m — mseA first

which is in the set represented by A, but which is not in the set repre-
sented by B. To see this, note first that m is in A. Second, note that m is
not in B by virtue of being in mseB. Note also that m cannot be in B by
virtue of being in mseB’, because of the assumption that

mseB’.last — mseA’ . last.

Since m is clearly not in B, m is in the set represented by A but not
in the set represented by B. Since the two sets of monad m’s are assumed
to be the same, we have a contradiction. Thus our assumption is false that
mseA first # mseB.first, and thus it is true that

mseA first — mseB.first.
Second, we prove that

mseA .last = mseB.last.
Assume, for the sake of contradiction, that

mseA last # mseB.last.
Assume, Without Loss of Generality, that

mseA .last > mseB.last.

CHAPTER 4. IMPLEMENTING THE EMDF MODEL 36

Then there is at least one monad, m = mseB.last + 1, which is in the
set represented by A but which is not in the set represented by B.

To see this, note that if i points to the last element in B, then certainly
there is a contradiction, since then the last monad in the set represented
by A is not in the set represented by B, since the vectors are sorted and
mseA.last > mseB.last.

Assume, therefore, that mseB” = B[i+1] exists. Then, by the invariant,

mseB.last + 1 = m < mseB” first.

Note that this means that m is not in the set represented by B, since it
“falls between two chairs” or, rather, two Monad set elements.
Note also that m is in the set represented by A, since

mseA .last > mseB.last
which is equivalent to
mseA.last > m — mseB.last + 1 > mseB first — mseA first.

Thus, m is in the set represented by A, but not in the set represented by
B, so the two sets are not identical, which we assumed. Therefore, there is a
contradiction, and it is therefore false that mseA .last # mseB.last. Therefore,
it is true that mseA.last — mseB.last.

We have thus proved the induction step.

We have thus proved that, if the sets represented by two vectors in two
Set _of monad ms’s are identical, then the vectors will be identical.

We have thus proved the proposition.

4.2.4 Operations on sets of monad ms:

For MQL and the implementation suggested in this chapter, at least the
following operations are needed on sets of monad ms:

1. A boolean function indicating part of between two sets.
2. A boolean function indicating whether the set is empty.

3. A function returning a set of monad ms which is the largest gap in a
set of monad ms starting at some monad m.

4. Set difference.
5. Set construction from a range a..b.

6. Offsetting a set of monad ms from or to any given monad m (see
below).

All of these can easily be implemented given the invariants on Monad Set
Element and Set Of Monad_ms.

CHAPTER 4. IMPLEMENTING THE EMDF MODEL 37

4.3 Specific object d classes

4.3.1 Introduction

In this section, we discuss a lot of useful ways of implementing specific ob-
ject _d classes. First, we discuss the monad d. Then follow object dm,
seq_ d (which keeps track of the sequence of monads), inst _d, feature value d,
feature info d, type d, enum info d, and lastly root d, which binds the
whole database together.

4.3.2 monad d

A monad _d contains the following information:
1. The monad _m to which this monad d corresponds.

2. For each user-defined object type in this database, a set of object id _d’s
of object dm’s of the given type which contain this monad. Coupled
with each object id d should be a boolean which answers the question
“does this object m start at this monad m?”

These lists must be optimized for insertion and deletion, and need not sup-
port [] indexing.
The reason for having the monad m in there is the following:

e We need some way of relating monad _d’s to monad _m’s.
The reasons for having the lists of object id d’s are the following:

e When traversing the database, it is useful to be able to go from monad _m’s
to those object dm’s which contain this monad m. For example, one
might be interested in all the words that are part of a clause which
contains a word with a known monad m. To find all the words, one
needs just look at which clauses contain the known monad m, and
work backwards from there. This is important when displaying the
contents of an EMdF database in a full-screen view.

e When inserting or deleting monads, it is necessary to be able to go
from monad m’s to those object m’s that contain them.

e When querying the database, it is absolutely necessary to know which
object m'’s start where.

The reasons for having the boolean that says “starts here” is:

e For querying purposes, we have to have some way of telling which
object m’s start at a given monad. This boolean is one way of doing
it.

CHAPTER 4. IMPLEMENTING THE EMDF MODEL 38

4.3.3 object dm
An object dm is basically these three things:

1. A pointer to the monad d which corresponds to the first monad m
of the set of monad m'’s of which this object dm is built,

2. A set of monad m’s which is built relative to the first monad m.
That is, the set {4,5,6} is stored as {0, 1,2} with respect to the first
monad m, which is 4. The first monad m can be found by looking
at the monad d to which we have a pointer.

3. A list of feature-values.
4. A type_id indicating the type of the object dm.

The reason for having this setup of a set of monads relative to some first
monad, and a pointer to the monad d which represents this monad m is:

e It makes things much simpler, easier, and faster when ingerting and
deleting monads.

4.3.4 seq_d

In any EMdF database, there is an object_d called seq d. This ob-
ject _d is used to keep track of the sequence of monads. It is simply a
list [0..max m)] of object id d’s of monad d’s. The index into this
list maps monad m’s to monad d’s.

4.3.5 inst_d

In any EMdF database, there is a special object_d, inst _d, which is used
to implement the inst function (see section 3.5.5).

This object has, for each object type, a list of pointers to object d’s
which each contains the following:

1. An object id_d of an object dm.
2. The first and last monad m of this object dm.

These lists are sorted on object ordinals.
The reason for sorting these lists on object ordinals is the same as the
reason for including the first and last monad m:

e Doing things this way helps in implementing the inst function.

When asked for the inst function for a particular universe, that value can
be expressed in terms of an upper and a lower index into this array. These
boundaries can be found by binary search, since we have the first and last
monad _m’s of each object dm. Thus the computation complexity of finding
the boundaries is O(log(max_m)).

CHAPTER 4. IMPLEMENTING THE EMDF MODEL 39

4.3.6 feature value d

A feature value d holds information about the value of a certain feature
taken on a certain object. This is so only if the feature is stored and not
calculated. It consists of the following:

1. The kind of value (integer, string, or enumeration constant).
2. An integer to hold the contents if they are an integer.
3. A pointer to a string to hold the contents if they are a string.

4. A pair (enum_id, enum _index) to hold the contents if they are an
enumeration constant.

The reason for holding what is effectively a pointer to the value of an enu-
meration constant, rather than the value itself, is that we may wish to change
the underlying values of the enumeration constants after the creation of the
enumeration type. This is then easily done (see enum _info d below).

4.3.7 feature info d

A feature info d holds information about the type of a feature m and
consists of the following:

1. A string containing the name of the feature m to which this fea-
ture_info d corresponds.

2. A value indicating which type the feature is (integer, string, enumera-
tion constant, or some calculated function).

3. An enum_id for the type of the enumeration constant, if the feature
returns an enumeration constant.

4. Some way of specifying which function within the EMdF engine to call
if this feature is calculated. Probably an integer specifying where in a
table of functions to look.

4.3.8 type d

A type_d holds information about an object type. It consists of the follow-
ing:

1. A string specifying the name of the type m.

2. An array of feature info d’s in feature id order. This is the way you
go from feature id to feature info d.

CHAPTER 4. IMPLEMENTING THE EMDF MODEL 40

It is probably a good idea if the implementation of an EMdF engine, upon
startup, reads all the type d’s (see root d below) and makes these mappings
(hash-tables or some sort of balanced binary trees) between these things:

e Between feature name and feature id.

e Between object type name and type id.

4.3.9 enum info d

An enum_info_d holds information about the type of a given enumeration
constant. It contains the following:

1. Maybe a type name, depending on whether enumeration constants can
be given a name in the type language of the full access model.

2. Definitely an array of pairs (enum_constant name, enum_constant _value).
This is how we go from enum index to the other two.

It is probably a good idea if the implementation of an EMdF engine, upon
startup, reads all the enum _info d’s an builds some sort of mapping between
the following:

e For each enumeration type, a mapping between enum_constant name
and enum_constant value.

e For all enumeration types, a mapping between (enum _id,enum_ index)
and enum_constant value.

4.3.10 root d

The root _d object (there is only one) in an EMdAF database is the single
most important object d. It contains all the information that is necessary
for accessing the rest of the database. It contains the following:

1. A pointer to the seq d object (see above).
2. A pointer to the inst _d object (see above).
3. An array of type d’s indexed by type id.

4. An array of enum_info d’s indexed by enum _id.

CHAPTER 4. IMPLEMENTING THE EMDF MODEL 41

4.4 Algorithms

4.4.1 Introduction

In this section, we give some algorithms which are useful when inserting or
deleting monads or objects from an EMdF database. We first treat monads:
Their insertion and their deletion. We then treat objects: Their insertion
and their deletion.

4.4.2 Insertion of monads

Inserting monads in an EMdF database is assumed not to be a common
task. It is assumed that the text is more or less fixed, and that insertion and
deletion of monads is infrequent.

The problem can be classified in this way:

1. Inserting a single monad at monad b, pushing monad b and all subse-
quent monads one upwards.

2. Inserting a sequence of monads 0..a at monad b, pushing monad b and
all subsequent monads a + 1 upwards.

3. Inserting a set A of monads relative to a monad b.

I choose to treat only the second instance. The third instance can easily be
built from this instance, while it is more useful than the first instance and,
it seems, not much more difficult.

One problem immediately presents itself: What do we do with objects
which start before b yet either end inside the range b..b+ a + 1 or end after
it? Do we insert the monads int these objects? If so, do we insert all the
monads? Do we also do it to objects which have no monads inside this range
(which is conceivable if all the monads are before and after the range)? Do
we do this to all object types which have objects which are like this? In any
case, the problem is not simple.

I propose to simply leave a hole in those objects.

To insert , we would need to:

1. Allocate a new seq_d,
2. copy the object id _d’s from 0 to b — 1 into the new seq_d,

3. Make a + 1 new monad d’s, giving them monad m’s in the range
b..b+a,

4. Insert these in the new seq d,

5. Increment max m by a+1, keeping the old max m somewhere around.

CHAPTER 4. IMPLEMENTING THE EMDF MODEL 42

6. Copy all of the old object id d’s from b to the old max m into the
new seq_d, starting from b+ a + 1,

7. Access all the monad d’s from b + a + 1 till the new max m and
increment the monad m field by a + 1,

8. Go through the monad d’s in the range b+ a + 1..b + 2a + 1. Pick
out the object d’s which started before b (i.e., which have a pointer
to a monad_d before b), make a “hole” in these, inserting a “gap” of
monad_m’s in the range b..b + a.

9. Go through each list in inst _d, updating those first and last monad _m’s
that need updating.

4.4.3 Deletion of monads

As with insertion, deleting monads in an EMdF database is assumed not to
be a common task. It is assumed that the text is more or less fixed, and that
insertion and deletion of monads is infrequent.

The problem can be classified in this way:

1. Deleting a single monad at monad b, moving monad b + 1 and all
subsequent monads one downwards.

2. Deleting a range of monads 0..a at monad b, moving monad b+ a + 1
and all subsequent monads a + 1 downwards.

3. Deleting a set A of monads relative to a monad b.

I choose to treat only the second instance. The third instance can easily be
built from this instance, while it is more useful than the first instance and,
it seems, not much more difficult.

One problem immediately presents itself: What do we do with those
objects that contain monads in the range to be deleted?

I propose to delete all objects which contain monads in the range to be
deleted. This is the simplest and easiest thing to do.

To delete a range of monads 0..a starting at a monad b:

1. Go through the monad d’s corresponding to the range b..b +a + 1
and gather all the object id _d’s which need to be deleted (i.e., which
have monads in this range).

2. Delete these objects (see “deletion of objects” below).

3. Move all object id_d’s in seq_d a + 1 down, starting from b+ a + 1
and finishing at max_m.

4. Update the usage count of seq_d and update max_m.

CHAPTER 4. IMPLEMENTING THE EMDF MODEL 43

5. Go through the monad d’s pointed to by seq d, starting from b and
finishing at max_m. Subtract a + 1 from the monad_ m in each
monad_d.

6. Go through thelistsin inst _d, updating those first and last monad m’s
that need updating.

4.4.4 Insertion of objects

There are two instances of this problem:

1. Insert a single object.

2. Insert a list of objects.

Since the second instance is more general, is not too difficult to implement,
and has certain advantages over the single-object instance, I choose to de-
liberate on the second instance.

It is assumed that the list of objects S is given in a form in which each
object O is represented by an object type O.T', a set of monads O.m, and a
set of values of data-oriented features O.f.

The insertion can be done this way:

1. Check to make sure that all the objects stay within 0 .. max m. If
not, append the right number of monad m’s to the database (insert
them at the end). This check can be done by finding the largest last
monad L of the O.m’s and comparing it to max_m. If L is larger,
insert monads such that max m becomes L.

2. Create a list R of object id d’s with as many entries as there are
objects in S. Each entry must be “empty”. This list is meant to be
returned to the user, and must contain, in the same order as the objects
in S, the object id _d’s of the created objects.

3. For each object type T represented in S, create an empty list Ip. This
list is meant to hold a product of indices and object id _d’s. The indices
are into the appropriate lists in inst d which must have object id d’s
inserted.

4. For each object O in S at index 1:

(a) Create a new object dm o with object id_d o.id.

(b) Insert O.m into o such that it is represented relative to the first
monad.

(c) Create the object d’s necessary to hold the data O.f, and insert
the data.

CHAPTER 4. IMPLEMENTING THE EMDF MODEL 44

(d) Make sure that o points to the right monad d.

(e) Insert o.id in the appropriate list for each monad _d corresponding
to the monad m’s in O.m, remembering to set the “starts here”
boolean to true only for the first monad d and to false for all
others.

(f) By binary search, find the appropriate index at which to insert

o.id into the appropriate list in inst d. Place this index, along
with o.id, into Ip.

(g) Put o.id in RJ[i].
5. For each list Ir:

(a) Sort Iy such that higher indices are first. If two indices are the
same (which it might be, if we are to insert “at the same place”),
sort according to the set of monads in the object dm’s pointed
to by the object id d’s that are coupled with the indices. If this
gives a tie, sort on object id d. (Note that this corresponds to
our definition of linear ordering of objects per type.)

(b) Run through I in sorted order, inserting the right object id and
first and last monad m’s in the appropriate list in inst _d.

6. Return R.

The reason for returning the list of object id d’s is that the user might wish
to know the object id d’s of the newly created objects.

4.4.5 Deletion of objects

There are two instances of this problem:

1. Delete one object.

2. Delete a set of objects.

Since the second instance is the more general, not too difficult to implement,
and handy for deletion of monads, I choose to deliberate on this problem.
It is assumed that the set of objects S to be deleted is expressed in terms
of their object id _d’s.
It can be done this way:

1. For each object o in S, run through the list in each monad d corre-
sponding to the monad m’s of which o is built, deleting the pointers
to o.

CHAPTER 4. IMPLEMENTING THE EMDF MODEL 45

2. For each object type T of object types actually represented in S, make
a set I of indices into the appropriate list in inst d whose entries
must be deleted. That is, for each object type T represented in S, for
each object O of type T in S, find O’s index into the appropriate list
in inst _d by binary search and store this index in Ir.

3. Sort each set Ir such that the highest indices are first.
4. Run through each set I in sorted order, deleting the entries in inst _d.

5. Delete all objects in S together with their associated data.

4.5 Conclusion

In this chapter, we have described the design of one way to implement some
of the key elements in an EMdF database. We began by looking at the crucial
concept of a set of monad m’s. We then went on to several classes of ob-
ject _d’s, including monad d, object dm, seq d, inst d, feature value d,
feature info d, type d, enum_info d, and root_d. We then described
four algorithms: One for insertion of monads, one for deletion of monads,
one for insertion of objects, and one for deletion of objects.
All of the material in this chapter has been original.

Chapter 5

MQL - Mini QL

5.1 Introduction

In this chapter, I develop, motivate, and explain the MQL language. MQL
stands for “Mini QL”, and is a subset (though not a proper subset) of the
QL language developed in Doedens’ book.

Two key structures are developed in this chapter: The sheaf, which is a
datastructure to hold the results of a query, and the syntax and semantics of
MQL itself. The semantics of MQL are given in operational terms, making
it relatively easy to implement in practice, given the right primitives. The
operational specifications are given in terms of functions written in some
Pascal-like language which is not defined rigorously here. Anyone familiar
with procedural, imperative programming languages like Pascal, C, Oberon,
etc. should have no difficulty reading the specifications.

We first give some motivation for why MQL is necessary. We then touch
briefly on the notion of ‘topographic languages’ which Doedens defined in his
dissertation. MQL is a topographic language. We then give the definition of
two concepts, namely Universe and Substrate. These are central in the se-
mantic definition of MQL. We then list and explain some differences between
Doedens’ work and my work. After that, we give an informal introduction to
MQL by means of some examples. This section should give the reader some
“feel” for MQL which will be helpful when reading the rest of the chapter.
We then give the definition and explanation of the sheaf, which is the datas-
tructure which holds the results of an MQL query. We then touch briefly on
a possible architecture for an MQL query engine. The next section details
quite a bit of information about MQL: Datatypes needed for MQL, lexical
rules for MQL, the grammar for MQL, the concatenation operators of MQL,
MQL variables, and a long exposition on why MQL needs to be compiled and
what should be checked for while compiling. The next section talks about
the concept of a state as embodied in the semantic specification of MQL.
The next section, which is the bulk of this chapter, gives the semantics of

46

CHAPTER 5. MQL - MINI QL 47

MQL in an operational specification. This is done by defining functions on
syntactic units of MQL, and explaining them in plain English. Finally, we
draw some conclusions.

5.2 Motivation

QL is a nice language, but it has one main drawback: It is very, very difficult
to implement in practice, because it is so powerful, and its semantics are so
abstract. The fact that Doedens gave the semantics as denotational seman-
tics means that there is no easy path to follow from syntax and semantics
to implementation.

MQL attempts to address this problem.

One way of doing this has been to reduce the power of the language
to a minimum, while still retaining power enough for “most applications”,
whatever that may be. The guiding design principle here has been to “take
all elements from QL which are easily implementable, and to leave out the
rest”.

The other way of doing this has been to give the semantics of each syntac-
tic construct in MQL, not as denotational semantics, but as an operational
specification.

5.3 The notion of ‘topographic languages’

In his PhD dissertation, Doedens defines a new notion, namely that of ‘to-
pographic languages’. A language is topographic if there are isomorphisms
between the graphs denoting the structure of the expressions of the lan-
guage and the graphs denoting the objects denoted by the expressions of the
language.

I believe that the notion of ‘topographicity’ is closely related to the lin-
guistic notion of ‘iconicity’, whereby there is an ‘iconic’ (cf. ‘topographic’)
relationship between the linguistic expression and the object it denotes. Here
‘iconic’ means that the linguistic expression ‘looks like’ or ‘resembles’ the
object which it denotes. The notion of ‘topographicity’ is, however, more
formally defined than the concept of ‘iconicity’, since it is defined in terms
of graphs and isomorphisms between graphs.

QL (and, therefore, MQL) is a topographic language. This means that
there is an isomorphism between the abstract syntax trees made from in-
stances of QL- (and MQL-) queries and the graphs that could be drawn of
the part of relationships between objects in the MdF (or EMdF) database.

CHAPTER 5. MQL - MINI QL 48

5.4 Preliminary definitions

5.4.1 TUniverse

A universe is a single contiguous string of monad ms. This is not a definition
taken from Doedens’ book. In Doedens’ book, a universe can be any set of
monads. However, as a consequence of the semantics of MQL, what Doedens
uses as a universe in QL is always a contiguous string of monads in MQL.

5.4.2 Substrate

A substrate is a set of monad ms. It may have gaps, but it always starts
at some monad m a and ends at some monad m b (where we may have
b= a). It is always part of the accompanying universe. The first and last
monads of a substrate need not, however, be the same as the first and last
monad of the accompanying universe.

The significance of subtrates is that we match relative to substrates!

5.5 Changes from Doedens’ work

This section details the changes that I have made to QL in order to obtain
MQL. It assumes a lot of familiarity with Doedens’ work.

The core elements are still there — topograph, blocks, block_string,
block, and object_block. The power_block is also there, but in another
form.

The main change, semantics-wise, is that a blocks need not match
the whole universe. Thus there is no need for “..” before and after the
object_blocks which one wishes to retrieve.

Instead, the first block in a block_string has to be a special object_block,
called object_block_first, which can optionally be specified as having to
be the first in the universe. The semantics-function for this object_block_first
is passed an indez into an array, assumed to be easily computable, (called
inst(T,U)) which gives all the objects of type T which are part of the uni-
verse U. These are assumed to be ordered according to the lexicographic
ordering within the type. The semantics function for object_block_first
does not return until it either finds the next match within this array (starting
at the index), or it exhausts the array.

Note that I have changed the definition of a sheaf slightly, but not much.
The main difference is that a matched_object can now be several different
things, which it couldn’t in Doedens’ definition of the sheaf.

Also, there is no provision for extracting features into the sheaf. It is
assumed that the implementation only wishes to obtain object id’s from the
MQL engine, and that the objects themselves can then be inspected for fea-
tures if desired. This is because, in the application from which MdF sprang

CHAPTER 5. MQL - MINI QL 49

(i.e., a syntactic database of Hebrew and Aramaic), and in the application
for which I am planning to use EMdF, it is normal practice, when a query
returns a lot of matches, that the user can then pick from a list of matches
and only then the features looked for are retrieved. This saves memory.

There is a provision for variables. However, it is an ¢mperative under-
standing of variables, not a functional understanding, as in QL. Thus there
is a state, not an environment (or Free var bindings).

Note also that, when comparing features to values (for selecting only
those objects which match certain feature criteria), the value is always a
single value, and the feature must be equal to this value. This differs from
QL, where a value is basically a set of values, and a feature’s value must be
a member of this set for the query to match.

I have also restricted the values to be

e enumeration constants (for things like “singular”, “plural”, etc.)

e integers
e strings

e variables (which must be of one of the above three types)

Variables are implictly typed, and can have a standard value, which means
that no value is assigned.

Finally, in QL, objects are not retrieved unless they are explicitly marked
for retrieval. In MQL, the reverse is true: objects are retrieved unless they
are explicitly marked for non-retrieval.

5.6 Informal introduction to MQL by means of some
examples

5.6.1 Introduction

This section informally introduces MQL by way of a number of examples.
The example database which we will use is the same as in Doedens’ book,
namely part of Melville’s “Moby Dick™:

“CALL me Ishmael. Some years ago - never mind how long pre-
cisely - having little or no money in my purse, and nothing par-
ticular to interest me on shore, I thought I would sail about a
little and see the watery part of the world. It is a way I have of
driving off the spleen, and regulating the circulation. Whenever I
find myself growing grim about the mouth; whenever it is damp,
drizzly November in my soul; whenever I find myself involuntar-
ily pausing before coffin warehouses, and bringing up the rear

CHAPTER 5. MQL - MINI QL 20

of every funeral I meet; and especially whenever my hypos get
such an upper hand of me, that it requires a strong moral princi-
ple to prevent me from deliberately stepping into the street, and
methodically knocking people’s hats off - then, I account it high
time to get to sea as soon as I can. [...]

“[...] By reason of these things, then, the whaling voyage was
welcome; the great flood-gates of the wonder-world swung open,
and in the wild conceits that swayed me to my purpose, two and
two there floated into my inmost soul, endless procesions of the
whale, and, mid most of them all, one grand hoofed phantom,
like a snow hill in the air.”

Suppose that we have in this EMdF database the domain-dependent object
types “paragraph”, “sentence”, and “word”, which correspond to paragraphs,
sentences, and words of the text. And suppose that we add to the object
type “sentence” the feature “mood”, which draws its values from the enu-
meration type { imperative, declarative }. And suppose that we add to the
object type “word” the features “surface” (which gives the surface text of the
word) and “part_of speech” (which gives the part of speech of the word).
The codomain of the feature “part of speech” on the object type “word”
draws its values from the enumeration type { adjective, adverb, conjunction,
determiner, noun, numeral, particle, preposition, pronoun, verb }. This hy-
pothetical database will give the background for most of the examples in our
informal introduction to MQL.

5.6.2 A query does not match the whole database

In the QL language in Doedens’ book, a query matches the whole database.
This need not hold true for an MQL query, for two reasons. First, because
the universe and substrate over which an MQL query is processed need not
be the whole database. And second, which is a more subtle reason, because
the syntactic construction of an MQL query does not reflect any supposition
that a query matches the whole database, as a QL query does.

5.6.3 topograph

An MQL query is called a topograph. Consider the following topograph:

[sentencel]

This topograph retrieves the set of all sentence objects in the database.

5.6.4 features

A query can specify which features an object must have for it to be retrieved.
For example, consider the following topograph:

CHAPTER 5. MQL - MINI QL o1

[word
surface = "Ishmael" or part_of_speech = verb;

]

This topograph retrieves the set of all words which are either “Ishmael” on
the surface of the text, or whose part of speech is “verb”.

5.6.5 object block,object block first

There are several types of blocks. They are meant to come in a string of
blocks, where each block in the string must match some part of the database
in order for the whole string to match. Two such blocks are the object_block
and the object_block_first.

Object blocks are the heart and soul of MQL queries. They are used to
match objects and objects nested in other objects. An object block (be it an
object_block or an object_block_first) consists of the following parts:

1. The opening square bracket, ‘[’.

2. An identifier indicating the object type of the objects which we wish
to match.

3. An optional keyword, “noretrieve” or “retrieve”. The default is
“retrieve”. The keyword “noretrieve” says as much as “I do not
wish to retrieve this object, even if matched”. It is useful for specifying
the context of what we really wish to retrieve.

4. An optional keyword, “first” or “last”, which says as much as “this
object must be first /last in the universe against which we are matching.

5. An optional Boolean expression giving what features need to hold true
for this object for it to be retrieved.

6. An optional list of assignments to variables.
7. An optional inner blocks which matches objects inside the object.

8. The closing square bracket, ‘]’.

Note that only the first object block in a string of blocks can have the “first”
keyword, and only the last object_block in a string of blocks can have the
“last” keyword. In order to build this into the semantics of MQL, I have
made a special syntactic category for the first object block in a string of
blocks, namely object_block_first.

Consider the following topograph:

CHAPTER 5. MQL - MINI QL 92

[sentence
mood = imperative;
[word noretrieve first
surface = "CALL";
]
[word]
]

This topograph retrieves the set of sentences which are imperative, and
whose first word is “CALL”. Within each sentence in that set, we retrieve the
second word, but not the first. The only sentence in our example database
which qualifies is the first sentence.

5.6.6 power block

The power block is used to indicate that we allow some distance in between
two blocks. A power block must always stand between two other blocks,
and can thus never be first or last in a query. It comes in two varieties: A
“plain vanilla” power block, syntactically denoted by two dots, “..”, and a
power block with a limit to how many monads may come between the two
embracing blocks, denoted by the two dots followed by the “less than” symbol,

followed by an integer, e.g., “.. < 5”. Consider the following topograph:
[sentence
[word
part_of_speech = preposition]
. < 4
[word

part_of_speech = noun]

[word last
surface = "world"]

]

This topograph retrieves the set of sentences which have a word that has part
of speech preposition, followed by a word which has part of speech noun, and
which is within 4 monads of the preposition, followed by the last word of
the sentence, which must be “world”. Within that sentence, retrieve all the
three words. The only sentence which qualifies is the second.

5.6.7 opt gap block

An opt_gap_Dblock is used to match an optional gap in the text. It consists
of:

CHAPTER 5. MQL - MINI QL 93

1. The opening square bracket, ‘[’
2. The keyword “gap?”.
3. An optional “noretrieve” or “retrieve”. The default is “noretrieve”

4. The closing square bracket, ‘1°.

The opt gap block matches gaps in the subtrate against which we are
matching. Thus if we look at the example in figure 2.1 on page 14, we
can construct the following topograph:

[clause
[clause_atom
[word
surface = "door,"

]
[gap? noretrieve]
[clause_atom noretrieve]

]

This retrieves all clauses which happen to have inside them a clause atom
which contains the word “door,”, followed by a gap, followed by a clause atom.
The gap and the second clause atom are not retrieved. This would retrieve
clause-1. The gap need not be there. Since this is the case, Clause-2 would
also be retrieved, were it not for the fact that it contains no word “door,”.
The default is for the result of an opt gap block not to be retrieved.
Thus one needs to explicitly write “retrieve” if one wishes to retrieve the

gap.

5.6.8 wvariables

Variables are declared before each group of object blocks (see later). The
understanding of variables is imperative rather than functional in MQL.
Thus variables must be assigned a value before they can be used to match
against something. Variables are declared and used like this:

var $c, $n, $g;

[word
part_of_speech = article;
$c := case;
$n := number;
$g := gender;
]

[word

CHAPTER 5. MQL - MINI QL o4

(part_of_speech = noun or part_of_speech = adjective)
and case = $c and number = $n and gender = $g;

]

Assuming that the word object type has features part _of speech, case, num-
ber, and gender, this topograph retrieves all pairs of words for which the part
of speech of the first word is “article”, the part of speech of the second word
is “noun” or “adjective”, and for which the case, number, and gender agree
for the two words.

This concludes our gentle, informal introduction to MQL.

5.7 Sheaf

5.7.1 Introduction

The sheaf is the datastructure which holds the results of an MQL query.
It has been amended from the Sheaf in Doedens’ book. The reason for
choosing to use a sheaf-like structure to hold the results of an MQL query
is the following: I found that, even though the sheaf is a little hard to
understand, it nicely captures the results we expect from a query, as well as
the topographic nature of MQL queries.

The sheaf is a set of straws. A straw is a set of matched_objects.
A matched_object denotes a “hit” of one object block against an object in
the database. A matched_object can, in one of its syntactic incarnations,
have a sheaf inside it, thus capturing the embedding that can take place
in hierarchies of MdF object types. This embedding closely matches the
structure of an MQL query.

5.7.2 Grammar

The grammar for the sheaf is:

sheaf : "//" my_set_of_straws ;
my_set_of _straws : /* empty */ | set_of_straws ;
set_of_straws : "{}" | straw (°’,’ straw)%
straw : "{}" | matched_objects ;
matched_objects : matched_object |

matched_objects matched_object ;
matched_object : NIL_.mo | EMPTY_mo | [’ OBJECT_ID

5.7.3 Explanation

As already remarked, a sheaf is a set of straws, and a straw is a set of
matched_objects. It is well to begin our discussion of the sheaf by explain-
ing in detail what a matched_object is.

7]7

b

CHAPTER 5. MQL - MINI QL 95

5.7.3.1 matched object

A matched_object can be one of three things:

1. NIL_mo
2. EMPTY_mo

3. an object id coupled with a sheaf.

The first syntactic incarnation, NIL_mo, never gets into any straw. It is
simply a value which a matched_object as a syntactic object may have
during execution of a query. It conveys the information that a match failed.

The second syntactic incarnation, EMPTY_mo, also never gets into any
straw. It is used during the execution of a query to indicate that an
opt_gap_block was matched against an empty stretch of the database (i.e.,
no monads).

The third syntactic incarnation is what gets into straws. The object id
may either be an object id _d or an object id m. In the case of an object
id_d, it denotes a match of an object_block (or an object_block_first)
against an object m in the database. In the case of an object id m, it
denotes a match of an opt_gap_block against a gap in the database, and as
such is the object id m of a pow__m object.

Note also that, for the third syntactic incarnation, there can be a sheaf
inside the matched_object. The intuition of this is that inside an object,
there can be strings of objects which need to be matched. These then go
into the sheaf.

5.7.3.2 straw

A straw is a set of matched_objects. It can either be “{}”, which denotes
an “empty set”; or it can be a matched_objects. The intuition of a straw is
that it denotes a “string” of matched_objects. Of course, a set is unordered,
but the intention is that a straw denote one match of a string of blocks that
need to be matched.

For example, consider the following topograph:

[word
surface = '"the";
]
[word
part_of_speech = noun;

]

One straw will contain two matched_objects, one for the “the”, and one for
the following noun.

CHAPTER 5. MQL - MINI QL o6

5.7.3.3 sheaf

A sheaf is a set of straws. It can be one of the following things:

1. “//”, in which case the matching failed, or

2. “// {3}, in which case the matching did not fail, but the results were
empty, or

3. “//” followed by a nonempty set of straws, which constitutes a nonempty
successful match.

By way of example, the topograph in the previous section about the straw
would retrieve a sheaf, which would contain as many straws as there were
combinations of “the” and a noun.

5.7.3.4 Correlation of sheaf-structures and MQL-structures

This section explains in a little more detail the correlation between sheaf-
structures and MQL-structures. It assumes familiarity with certain MQL-
structures. Therefore, it may be skimmed or skipped until a thorough un-
derstanding of MQL has been gained. The reader is then advised to return
to this section, and even to refer back to it as he or she reads through the
exposition on MQL.

Because MQL is a topographic language, there should also be topo-
graphicity between the results of a query and the query from which it was
constructed.

A sheaf constitutes a matching of a blocks. Note that there are two
places in the MQL grammar which refer to a blocks. One is the top-level
start symbol, topograph. This means that the result of a query is a sheaf.
The other is my_blocks. The my_blocks syntactic construct is used in two
places: in an object_block_first and in an object_block. It can ei-
ther be a blocks, meaning that we want to match something inside the
object_block(_first), or it can be empty, meaning that we put no restric-
tions on what must be inside the object_block(_first). If it is a blocks,
the result will, of course, be a sheaf. This is why the third syntactic incar-
nation of a matched_object has a sheaf inside it.

A straw constitutes one matching of a block_string. However, the the
result of a match of a block_string is a set of straws, not a single straw!
This is because a block_string may result in more than one straw. This
will become clear as we study the semantics of the block_string.

A matched_object corresponds to a block of some kind, be it an object_block,
an object_block_first, or an opt_gap_block.

CHAPTER 5. MQL - MINI QL

)

Type checker

AST

AST

MQL Interpreter

tokens
Lexer Parser
AST
AST
Symbol Checker Weeder
Sheaf

MQL Sheaf

Figure 5.1: An architecture for an MQL query engine

5.7.4 Sets as lists

o7

The semantics of MQL are such that lists can be used instead of sets. These
lists must be optimized for prepending and appendening of other lists. Thus,
even though the concept is a set, a list can be used without checking for
“membership” when doing “union” with (i.e., prepending or appending of)

another list.

5.8 An architecture for an MQL query engine

In figure 5.1 on page 57, we have suggested an architecture for an MQL query
engine. The figure should be straightforward to read and should deserve no

further comment.

5.9 MQL

5.9.1 Datatypes

We need the following datatypes:

e INTEGER - ordinary integers.

e index - an integer suitable for indexing into inst(T,U)

e monad - a monad m

e boolean - a Boolean

CHAPTER 5. MQL - MINI QL o8

e sheaf, set_of_straws, straw, matched_object - as in the grammar
for the sheaf.

e mo_nr - a pair (matched_object,boolean) which gives amatched_object

paired with a boolean saying whether or not it is to be retrieved
(MatchedObject NoRetrieve).

e set_of_mo_nr - a set of “mo_nr’s.

e enum enum_first_last {no_first_last, first, last} - an enumera-
tion.

e set_of_monad_ms - a set of monad m’s : the same as in an object.
Used for universe, substrate, and pow m object id m’s.

e instances - an array intended to hold inst(T,U).
e state - a state of variables in a blocks.

e object - an object_d.

5.9.2 Lexical rules

Whitespace is to be ignored in the lexer, except as delimiters of tokens. The
token IDENTIFIER is any identifier valid in C or Pascal. The token STRING
is a string enclosed in "double quotes". The token INTEGER is any integer,
positive or negative. The lexer is case sensitive.

5.9.3 Grammar

In this section, we give the full grammar of MQL. It is specified in a form of
Backus-Naur Form which resembles that used in Yacc and Bison. The only
liberty that I have taken with the Yacc/Bison syntax is to place tokens which
are strings in "double quotes", e.g., "var". Other tokens are in UPPER
CASE, e.g., IDENTIFIER.

This grammar has been tested with Bison and has been found to be
unambiguous and LALR(1).

The full grammar for MQL is:

topograph : blocks ;
blocks : variable_declarations block_string ;
variable_declarations : /* empty */ | "var" var_dec_variables
var_dec_variables : variable | var_dec_variables

’,? wvariable ;
variable : ’$’ IDENTIFIER ;
block_string : block_str |

block_str power block_string ;

).

bl

)

features variable_assignments
my_blocks]’

last : /% empty */ | "last"

power : ".." restrictor ;

restrictor : /% empty */ | ’<’ limit ;
limit : INTEGER ; /* non-negative integer,

may be 0. */

CHAPTER 5. MQL - MINI QL 29
block_str : object_block_first |
object_block_first !’ rest_of_block_str |
object_block_first rest_of_block_str ;
object_block_first : [’ type retrieval
firstlast features
variable_assignments
my_blocks ’]°
type : IDENTIFIER
retrieval : /% empty */ | 'noretrieve" | ‘'retrieve"
firstlast : /% empty */ | "first" | "last"
features : /% empty */ | ffeatures ’;’ ;
ffeatures : fterm | ffeatures "or" fterm ;
fterm : ffactor | fterm "and" ffactor ;
ffactor : '"not" ffactor |
y(? ffeatures)’ | feature ;
feature : feature_name ’=’ value ;
feature_name : IDENTIFIER ;
value : enum_val | INTEGER |
STRING | variable ;
enum_val : IDENITIFIER ;
variable_assignments : /* empty */ | vvas ;
vvas : variable_assignment |
vvas variable_assignment ;
variable_assignment : variable ":="
feature_name ’;’
my_blocks : /* empty */ | Dblocks ;
rest_of_block_str : block |
block !’ rest_of_block_str |
block rest_of_block_str ;
block : opt_gap_block | object_block ;
opt_gap_block : [’ '"gap?" opt_retrieval]’ ;
opt_retrieval : /% empty */ | 'noretrieve" | ‘'retrieve"
object_block : [’ +type retrieval last

b

CHAPTER 5. MQL - MINI QL 60

5.9.4 The concatenation operators

There are two places in the grammar where an exclamation mark (‘1) is
used. One isin block_str between an object_block_first and arest_of_block_str.
The other isin rest_of _block_str between ablock and a rest_of_block_str.
It will be noted that both of these constructs have counterparts with no ex-
clamation mark in between. The exclamation mark is called a “concatenation
operator”, as is the “invisible” counterpart.
A prepass should be done on the query so that, before parsing the query,
the following syntactic operations should be applied:

e Each exclamation mark concatenation operator must be erased.

e Each invisible concatenation operator must be replaced with the string
“[gap? noretrieve]”.

Thus there are no exclamation mark concatenation operators in the Abstract
Syntax Tree that gets passed to the MQL query interpreter.

Note that the net effect of these syntactic operations could equivalently
be achieved after parsing with a simple manipulation of the Abstract Syntax
Tree. This is actually the recommended approach.

The reason for having these concatenation operators is that we do not
want the user to have to know about possible optional gaps in the text.
This is very useful, for example in dealing with classical Greek, where any
sentence-initial phrase may be split in the middle by a word from a certain
set of well-known words. We do not want the user to explicitly mark that
such gaps could optionally be there. It is better, when asking for results, to
be shielded from one’s ignorance than to retrieve incomplete results. Thus
this amendment embodies the principle that “what you don’t know won’t
hurt you”.

5.9.5 MQL variables
5.9.5.1 Introduction

In this subsection, we expand on what we have already said about MQL
variables by commenting on naming, usage, and typing.

5.9.5.2 Naming

Variables are set apart from the rest of the namespace by a prefixed dollar
sign: ‘$’. It is the intention that there be no whitespace between the dollar
sign and the IDENTIFIER which makes up the variable name. Scope rules
could be applied to variables, but for now, let us simply have one namespace
for each topograph, and let us say that a variable can only be declared once
in each topograph.

CHAPTER 5. MQL - MINI QL 61

5.9.5.3 Usage

Variables must be declared before they can be used. This is done before each
blocks. Since a blocks can be nested inside an object_block(_first),
there can be several variable_declarations.

Variables must be assigned a value before they can be used. That
is why the variable_assignments comes after the features inside the
object_block(_first). The intuition is, that a variable is not of much
use within the features of the same object_block(_first). A variable
only becomes useful in comparing with a feature of another object_block.
Thus, by enforcing the rule that a variable must be assigned a value before
it can be used, and by ensuring that it gets assigned a value only after any
feature comparison within the same object_block(_first), we keep these
intuitions.

A variable can only be assigned to once in a blocks.

A variable’s “existence” is only within the blocks before which it has
been declared. Thus a variable cannot be accessed outside of its blocks.

5.9.5.4 Typing

MQL variables are implicitly typed. As said earlier, an MQL variable can
have any of these types:

e enumeration constants (for things like "construct", "absolute", etc.)
e integers

e strings

The type of a variable is determined by the type of the feature with which
it is assigned. The compiler should check that a variable is used only in a
context in which it is compared to something which is of the same type as
the variable itself.

5.9.6 MOQL needs to be compiled
5.9.6.1 Introduction

As noted in section 5.8.1 think it would be wise to transform an MQL query,
written in MQL, into an AST (Abstract Syntax Tree). Various checks should
be performed on this AST before passing it to an interpreter which actually
builds the sheaf. For example, variables should be type-checked (they are
implicitly typed), and various well-formedness criteria should be checked for.
In the following sections, we list some of the criteria that should be checked.

CHAPTER 5. MQL - MINI QL 62

5.9.6.2 Scope-rules

To keep things simple, I suggest that we stipulate the requirement that no
two variables in a topograph may be called the same. The scoping rules
could be such that a given variable can only be “seen” within the blocks in
which it was declared, but in order not to have to mess with variables of the
same name in different, nested scopes, it is easier to stipulate that no two
variables in a topograph may be named the same. It would be easy later to
change this, since scoping-rules are well understood, but for now, let us stick
with this.

5.9.6.3 Type-checking of object types

The type of object in an object_block(_first) must be a valid object type
(i.e., the object type must exist in the EMdF database, and it must not be
all_m, pow_m, or any m!).

5.9.6.4 Type-checking of feature name

The compiler should check that feature_name (of feature) is part of the
type for the immediately enclosing object-type.

5.9.6.5 Type-checking of variable usage

There must be type-consistency (type-compatibility) between what a vari-
able has been assigned and that to which it is compared.

5.9.6.6 Non-assigned variables

Note also that in the usage of value in feature, a variable may not occur
which has not previously been assigned a value by a variable_assignment.
5.9.6.7 Only one variable assignment

It is the intention that there be only one variable assignment per variable
per blocks. The compiler should check this.

5.9.6.8 Variable usage only within its blocks

It is the intention that a variable only be used inside the blocks before which
it was declared. The compiler should check this.

5.9.6.9 Usage of “first”

It is the intention that the “first” modifier of object_block_first only
be used for the first object_block_first in a blocks. The compiler should
enforce this. Note that the grammar allows an object_block_first after

CHAPTER 5. MQL - MINI QL 63

a power, and so this is not enforced by the grammar. It could probably
(depending on the implementation of the AST) be checked by checking to see
whether the object_block_first is the leftmost leaf in the blocks subtree.
When we have explained the retrieval functions, it will be apparent that there
is a very good reason for allowing an object_block_first after a power, in
spite of the fact that it should not be allowed to be “first” in the universe.

5.9.6.10 Usage of “last”

It is the intention that the “last” modifer on object_block_first and
object_block only be used for the last object_block(_first) in a blocks.
The compiler should enforce this. Note that it is not in any way enforced by
the grammar. It could probably (depending on the implementation of the
AST) be checked by checking to see whether the object_block(_first) is
the rightmost leaf in the blocks subtree.

5.10 State

5.10.1 Introduction

As we all know, a state is basically a mapping from variable names to their
values at any given point in time. In this section, we briefly expand on the
operations needed for the state concept in an MQL interpreter. We also give
hints on how to implement such a state.

5.10.2 Operations on a state

Basically, we need three operations on a state:
e Creation of a (variable name,value) pair.

e Assigning a value to a variable.

e Reading the value of a variable.

If we later implement scoping of variable names, we will need to have two
other operators, in order to allow overshadowing of variable names:

e Scoping of a state, which basically means putting an overriding state
on the top of a stack, the new state now being the more current one,
leaving the old state(s) available for reference for variable names which
are not in the current state.

e Unscoping of a state, which is removing a state from the top of the
stack of states.

CHAPTER 5. MQL - MINI QL 64

In this paper, we will use the following notation for the above operations.
For all states S and all variable names v:

e “S + v” indicates creation of a (variable name, value) pair in S. The
variable name is v. The value is undefined at creation time. If v is
there already, nothing special happens. Specifically, its value is not
changed.

e “S.v := value” indicates assigning a value to v in S.

e “S.v” indicates reading the value of v in S.

Since we have chosen not to implement scoping yet, we do not give any
notation for scoping and unscoping states.

5.10.3 Hints on implementation

A state can be implemented as a hash-table of (variable name,value) pairs,
where we hash on the variable name. This will allow easily for the three
operations needed. If we later decide to implement scoping, our state will
just be a stack of hash tables.

5.11 The Retrieval Functions R

5.11.1 Introduction

This section details the syntax and semantics of a set of retrieval runctions
for MQL. Each retrieval function either operates on some syntactic construct
in MQL or are helper functions.

The suggested way of reading this section is as follows: Once from front
to back and once from back to front. That way, the reader will first get
the broad picture in a top-down manner, and then the details in a bottom-
up manner. The sections are arranged approximately in a depth-first order
according to the order in which non-terminals are introduced in the MQL
grammar, starting from the start symbol.

The return types of the retrieval functions are given after an arrow, “-->".
Unlike Pascal functions, these retrieval functions may return more than one
value at a time.

The standard value of a variable is indicated by a ‘?’ question mark.

5.11.2 Arguments to the functions

The following are standard arguments to the retrieval functions. Not all of
them need be in the formal parameters of any given retrieval function, but
all of them are in the formal parameters of some retrieval function.

CHAPTER 5. MQL - MINI QL 65

e U, Su - Universe, Substrate. A Universe is a single, contiguous string
of monads. A Substrate Su is always part of the Universe with which
it belongs, but it may have gaps. We match relative to substrates!

e S - State. See above for a discussion.
e Sm - Start Monad — the monad at which we are to start our matching.
e i- index into inst(T,U) which we are to use.

e limit - limit of .. (power), counted in monad ms. If 0, it means “no
limit”.

The semantics of the arguments is call-by-value, unless prefixed by the key-
word “var” in the list of formal parameters, in which case they are call-by-
name. Nothing is changed which is not call-by-name. Therefore, call-by-
value parameters might be implemented as const-references, if we use, e.g.,
C++.

5.11.3 topograph
5.11.3.1 syntax

topograph : blocks ;

5.11.3.2 semantics

The retrieval function R for the topograph is:

/%

* R_topograph

* returns : sheaf

* ON FAIL: "// " (see R_blocks)
*/

function R_topograph(U,Su,topograph) --> sheaf;
begin

return R_blocks(U,Su,{},blocks);
end;

5.11.3.3 explanation

The R_topograph retrival function takes a universe U, a substrate Su, and a
topograph. It returns a sheaf. The only thing it does is to call R_blocks
with its arguments, as well as an empty state, thus returning all the possible
matches of the topograph.

CHAPTER 5. MQL - MINI QL

Note that we do not, as QL does, specify that U and Su must be all m-
m-1 respectively. This is because this decision should be made
higher up in the architectural hierarchy. For example, we might wish to
search the results previously made, or we might wish to restrict the search
to certain books (in a Biblical setting), without specifying it in the MQL

1 and all

query itself.

5.11.4 blocks

5.11.4.1 syntax

blocks : variable_declarations block_string ;
5.11.4.2 semantics

/*

* R_blocks

* returns : sheaf

* ON FAIL: “// "

*/

function R_blocks(U,Su,var S,blocks) --> sheaf;
var

Sheaf : sheaf;

i : index;

Result : set_of_straws;

SStrawsl : set_of_straws;

begin

i:=0;

Result := {};

/* expand S by variable_declarations (if not
already there), and set all variables in
variable_declarations to the standard
value */

R_variable_declarations(S,variable_declarations);

/* Treat the block_string. */
repeat
SStrawsl :=

R_block_string(U,Su,S,i,0,block_string);

Result := Result "union" SStrawsi;
i:=1+1;
until (SStrawsl = {}); /* Return when match
fails. */
if (Result = {}) then

CHAPTER 5. MQL - MINI QL 67

Sheaf := "//";
else
Sheaf := "//" Result;
return Sheaf;
end;

5.11.4.3 explanation

The R_blocks retrieval function takes a universe U, a substrate Su, a call-
by-name state S, and the blocks syntactic construct which we wish to treat.
It returns a sheaf. If it fails, it returns “// 7.

The idea of R_blocks is that it returns a sheaf with all the possible
matches of the block_string.

The function is very simple. The reason why we enclose the call to
R_block_stringin a repeat ... until statement is that we wish to retrieve
all of the block_string matches we can get. Thus we increment i each time.

The i variable is an index into an inst(T,U) array, and it is used as such
in R_object_block_first. The i variable is a call-by-name variable all the
way down through the call-path down to R_object_block_first, and can
be modified by all of the functions along the path.

The reason why we do not include the call to R_variable_declarations
in the repeat ... until statement is that it is unnecessary: Once the vari-
ables are declared, they need not be redeclared. Further, since we have stip-
ulated (and since the compiler enforces) that all variables should be assigned
a value before their first use, we do not need the side-effect that all variables
are assigned the standard value in the call to R_variable_declarations

5.11.5 variable declarations

5.11.5.1 syntax

variable_declarations : /* empty */ |
"var" var_dec_variables ’;’ ;
var_dec_variables : variable |
var_dec_variables ’,’ variable ;
variable : IDENTIFIER ;

5.11.5.2 semantics

/*

* R_variable_declarations
* returns : nothing

* Note: Modifies S

*/

function R_variable_declarations(var S,variable_declarations);

CHAPTER 5. MQL - MINI QL 68

begin
/* Decide syntactic incarnation */
if (variable_declarations = "var" var_dec_variables ’;’)
begin
for each variable v in var_dec_variables do
begin
S :=8S + v;
S.v :=7;
end;
end;
end;

5.11.5.3 explanation

The R_variable_declarations retrieval function takes a call-by-name state

S and the variable_declarations syntactic unit which we wish to treat.

The function does not return anything, but simply operates on the state S.
There are two possible outcomes of the function. If variable_declarations

is empty, nothing happens. If, on the other hand, variable_declarations

is not empty, each variable in var_dec_variables gets added to S (if it is

not already there), and the variable gets the standard value “7”.

5.11.6 Restrict

The Restrict function is used in R_block_string.

5.11.6.1 semantics

One implementation could be like this:

/*

* Restrict

* returns : set_of_monad_ms

*/
function Restrict(U : set_of_monad_ms, m : monad) --> set_of_monad_ms;
begin

return U - (U.first()..m-1);
end;

5.11.6.2 explanation

The Restrict function is not a retrieval function, in that it does not operate
on a syntactic unit of the MQL grammar. Rather, it is a utility function
which is used in the R_block_string retrieval function. It takes a set of
monad m’s U and a monad m m. It returns a set of monad m’s.

CHAPTER 5. MQL - MINI QL 69

The result of the Restrict function is U minus all the monads from
U.first() to m-1. Thus the first monad of the result will be m, if {m} is part _of
U.

5.11.7 join

The join function is used in R_block_string, in R_block_str, and in
R_rest_of_block_str.

5.11.7.1 semantics

function join(s : straw, SS : set_of_straws) --> set_of_straws;

var
Result : set_of_straws;
begin
Result := {};
for (each straw s’ in SS) do
begin
Result := Result "union" { (s "union" s’) };
end;
return Result;
end;

5.11.7.2 explanation

The join function is not a retrieval function, in that it does not operate on
a syntactic unit of the MQL grammar. Rather, it is a utility function which
is used in various retrieval functions. It takes a straw s and a set of straws
SS and returns a set of straws.

What join does is to “multiply” s into all the straws in SS. If concate-
nation is used for union, s is prepended to each straw s’ in SS.

5.11.8 block string

5.11.8.1 syntax

block_string : block_str |
block_strl power block_stringl ;

Note: The 1’s on the block_str and block_string in the rule are just there
for identification purposes: They are just “block_str” and “block_string”
respectively.

CHAPTER 5. MQL - MINI QL 70

5.11.8.2 semantics

/*

* R_block_string

* Returns : set_of_straws

* ON FAIL: {} Only fails if all the i’s within the Universe

* have been tried unsuccessfully.

*/
R_block_string(U,Su,var S,var i,limit,block_string) --> set_of_straws;
var

Strawl : straw;
locallimit : INTEGER;
U?,Su’ : set_of_monad_ms;

i? : index;
SStrawsl, SStraws2, Result : set_of_straws;
begin
/* --- decide which syntactic incarnation to use --- */
if (block_string = block_str) then
begin
return R_block_str(U,Su,S,i,limit,block_str);
end
else /* block_strl power block_stringl */
begin
while(true) do
begin

SStrawsl := R_block_str(U,Su,S,i,limit,block_strl);
if (SStrawsl = {}) then
return {}; /* This means that the block_strl was
not present, so we needn’t search
any further for the power and the
block_stringl. */
else
begin
Result := {};
for (each straw Strawl in SStrawsl) do
begin
locallimit := R_power (power) ;
/* --- Restrict U and Su to begin with
Strawl.last()+1 --- */
U’ := Restrict(U,Strawl.last()+1);
Su’ := Restrict(Su,Strawil.last()+1);
i’ := 0;
/* --- This repeat...until statement embodies
the idea that the power plus block_stringl

CHAPTER 5. MQL - MINI QL 71

matches _all_ those matching block_stringl
inside the universe, not just the first
one. --- %/
repeat
SStraws2 :=
R_block_string(U’,Su’,S,
i’,locallimit,block_stringl);
if (SStraws2 <> {}) then

/* --- multiply Strawl into all
straws in SStraws2 --- */
Result := Result "union"
join(Strawl, SStraws2);
i? =1’ + 1,
until (SStraws2 = {});

end;
if (Result <> {})
return Result;

5.11.8.3 explanation

The R_block_string retrieval function takes a universe U, a substrate Su, a
call-by-name state S, a call-by-name Start Monad m i, a limit limit, and
the block_string syntactic construct which we wish to treat. It returns a set
of straws. The result of R_block_string is one match of the block_string.

The invariant on R_block_string is that it should only return if it can
either return a match to the block_string or has tried all possibilities with-
out success.

If the syntactic incarnation at hand is just a single block_str, this func-
tion simply returns the result of a call to R_block_str. This is in harmony
with the invariant above, since R_block_str also only returns if it has either
found a match or has exhausted all possibilities.

If the syntactic incarnation is a block_str followed by a power followed
by a block_string, another method is used. Here, we first retrieve the
results of the block_str. If this is empty (i.e., R_block_str failed), we
know that the block_string after the power is not going to match any-
thing either, and we can return an empty set of straws indicating a fail.
If, however, the call to R_block_str returned a nonempty set of straws
SStrawsl, then we do the following: For each straw Strawl in SStrawsl,
we make a new universe and a new subtrate, based on U and Su, but

CHAPTER 5. MQL - MINI QL 72

with all monads up to and including the “last” monad m in Strawl taken
away.! We then retrieve the block_string with successive indices (which
are used in R_object_block_first) until R_block_string returns a failed
match (empty set of straws), all the while adding the join of Strawl and
the results of R_block_string to a temporary variable, Result, which is a
set_of_straws. We do this because we want the semantics that a block_str
plus power plus block_string matches all the block_strings after the
power within the universe, joined to the first block_str, not just the first
one. This is consistent with the intuition that a power has semantics similar
to those of a “star” wildcard in Unix shell pathnames, e.g., “foo*bar” matches
both “foobar”, “fooabar”, and “foothisisaverylongintermediatestretchbar”.

If the Result variable is empty after having gone through the set of straws
returned by R_block_str, it was maybe just bad luck that the combination
of block_str and block_string did not match. Thus, because we must
only return a fail if we have tried all possibilties, we increment i by 1 and
do all this again, thus hopefully matching the block_str at a point which
which will match with the block_string. Note that this always terminates,
since R_object_block_first, which is the one to use i, returns a fail if i
is too big, i.e., if it goes beyond the length of inst(T,U). This fail is then
propagated up through the hierarchy.

The function is actually quite simple, despite its cluttered look. Its out-
line is as follows:

1. IF (the syntactic incarnation is block_str) THEN

(a) return the result of R_block_str with all the parameters just
passed on.

2. ELSE (i.e., the syntactic incarnation is block_strl power block_stringl)
WHILE (true) DO

(a) Calculate SStrawsl := R_block_str with all of the formal pa-
rameters which we got.

(b) IF (Sstrawsl is empty) THEN (we know that it is no use looking
for the block_stringl after the power, so) return {}, which is a
failed match.

(¢) ELSE

i. Initialize Result to be {}. Result is a set_of_straws.
ii. FOR (each Strawl in Sstraws1) DO

!Note that this is always well-defined, since in a straw there will always be a “last” ob-
ject__dm which reaches furthest down. We just take the last monad m of this object dm
to be the last monad m of the straw, ignoring inner sheafs.

CHAPTER 5. MQL - MINI QL 73

A. Calculate U’ to be the restriction of U to begin with
Strawl.last() + 1.

B. Calculate Su’ to be the restruction of Su to begin with
Strawl.last() + 1.

C. Initialize i’ to be 0.

D. REPEAT Sstraws2 := R_block_string on block_stri
with U’, Su’, i’, and the limit from power. IF this was
not a fail, THEN add the join of Strawl and Sstraws2
to Result. UNTIL R_block_string failed (i.e., there are
no more matches to block_stringl within the universe).

iii. IF (Result is not empty, i.e., we matched something, which
was also all we could match) THEN

A. Return Result.
(d) Increment i by 1, then go once more round the WHILE loop.

5.11.9 power
5.11.9.1 syntax

power : ".." restrictor ;
restrictor : /% empty %/ | ’<’ limit ;
limit : INTEGER ; /* non-negative integer, may be 0. */

5.11.9.2 semantics

/*
* R_power
* Returns : an integer which is the limit, O if no restrictor
*/
function R_power(power) --> INTEGER;
begin
/* --- decide which syntactic incarnation to use --- */
if (restrictor is empty) then
return O;
else
return limit; /* Note: This is an abstraction of "return
R_1imit(limit)", where R_limit simply
returns the integer value of limit. */
end;

5.11.9.3 explanation

This retrieval function simply returns the limit in the restrictor, or 0 if
the restrictor is empty. The reason why we return 0 when the restrictor

CHAPTER 5. MQL - MINI QL 74

is empty is that “no restrictor” means “no limit”, which is denoted by a
limit of 0.

5.11.10 block _str
5.11.10.1 syntax

block_str : object_block _first |
object_block_first rest_of_block_str ;

5.11.10.2 semantics

/%
* R_block_str
* Returns : a set of straws
* ON FAIL: {}
function R_block_str(U,Su,var S,var i,limit,block_str) --> set_of_straws;
var
mo : matched_object;
Sm : monad; /* Start Monad */
noretrieve : boolean;
sos : set_of_straws;

begin
/* --- decide which syntactic incarnation to use --- */
while (true) do
begin
if (block_str = object_block_first) then
begin
(mo, noretrieve) := R_object_block_first(U,Su,S,

i,limit,object_block_first);
if (mo = NIL_mo) then
return {}; /* This means that R_object_block_first
failed. */
else if (not noretrieve)
return { { mo } }; /* This means, a set of one straw
A, A having only one
matched_object. */
end else
begin /* object_block_first rest_of_block_str x*/

/* --- We need to keep trying successive i’s because
R_block_str should only fail if absolutely all
possibilities within the universe have failed. --- */

(mo, noretrieve) := R_object_block _first(U,Su,S,
i,limit,object_block_first);

CHAPTER 5. MQL - MINI QL 75

if (mo = NIL_mo) then

return {}; /* This means that

R_object_block_first failed. */

else
begin

/* Calculate start monad */

Sm := mo.last() + 1;

sos := R_rest_of_block_str(U,Su,S,

Sm,rest_of_block_str);

if (noretrieve) then
begin

/* The noretrieve flag on the first object
block was true. So we should not return
the result of R_object_block_first, but we
should return the result of
R_rest_of_block_str, if this is not empty.

*/

/* --- Only return if rest_of_block_str
matched. ---

*/

if (sos <> {}) then
return sos;
end
else
begin
/* Noretrieve was false, so we should
retrieve the result of
R_object_block_first. We should
only do so, however, if
R_rest_of_block_str also returned
something that matched.
Otherwise, the whole expression did not

match. */

/* --- DOnly return if rest_of_block_str
matched. ---

*/

if (sos <> {})
return join({ mo },sos);
end;
end;

CHAPTER 5. MQL - MINI QL 76

5.11.10.3 explanation

The retrieval function R_block_str takes a universe U, a substrate Su, a
call-by-name state S, a call-by-name index i, a monad m limit 1imit, and
the block_str syntactic construct that we wish to treat. It returns a set of
straws. The result of R_block_str is one match of a block_str. Note that
this may involve several straws.

The idea of the R_block_str function is that it must only return when
either a match has been found, or when absolutely all possibilities have been
exhausted (in which case it returns a fail, that is, an empty set of straws).

It is important to understand that R_object_block_first returns a pair
(matched_object,boolean), where the boolean tells whether we should not
retrieve the matched_object. This pair is called an mo_nr pair.

This function only returns in these cases:

1. If the syntactic incarnation is just object_block_first:

(a) If the call to R_object_block_first failed, we return the empty
set of straws.

(b) If the call to R_object_block_first did not fail, but returned
a matched object mo which we must retrieve, we return a set of
straws containing one straw containing mo.

2. If the syntactic incarnation is object_block_first followed by rest_of_block_str:

(a) If the call to R_object_block_first failed, we return the empty
set of straws.

(b) If the call to R_object_block_first did not fail, but returned a
matched_object mo:

i. If we are not to retrieve mo, and the call to R_rest_of_block_str
returned a non-empty set of straws sos, we return sos.

ii. If we are to retrieve mo, and the call to R_rest_of_block_str
returned a non-empty set of straws sos, we return {mo} joined
into sos.

If none of these cases apply, we increment i by one and try once more.
This function is actually quite simple, despite its cluttered look. The
outline of the function is as follows:

CHAPTER 5. MQL - MINI QL 7

1. WHILE (true) DO

(a) IF the syntactic incarnation is just object_block_first:

i. CallR_object_block_first toretrieve an mo_nr pair (mo,noretrieve).
ii. IF (the call to R_object_block_first failed) THEN return
the empty set of straws. This is because R_object_block_first
only returns a fail if all possibilities have been exhausted.
iii. ELSE IF (we are to retrieve mo) THEN return a set of straws
with a single straw, consisting solely of mo.

(b) ELSE (i.e., the syntactic incarnation is object_block_first rest_of_block_str)

i. CallR_object_block_first to retrieve an mo_nr pair (mo,noretrieve).
ii. IF (the call to R_object_block_first failed) THEN return
the empty set of straws.
iii. ELSE

A. Calculate Sm :=mo.last() + 1. Smis the start monad m
at which we are to find the beginning of the first block
in the rest_of_block_str.

B. Calculate sos as a call to R_rest_of_block_str with Sm
as the start monad.

C. IF (we are not to retrieve the matched_object returned
by R_object_block_first) AND (sos is not empty) THEN
return sos. Thisis what we want: R_object_block_first
did not fail, R_rest_of_block_str did not fail, and we
must not retrieve the results of R_object_block_first.
Thus, we return the results of R_rest_of_block_str.

D. IF (we are to retrieve the matched_object returned by
R_object_block_first) AND (sos is not empty) THEN
return {mo} joined into sos. This is also what we want:
R_object_block_first did not fail, R_rest_of_block_str
did not fail, but returned a set of straws. So we multiply
mo into all the straws of sos.

(c¢) Increment i by 1, and try the WHILE-loop once more.

5.11.11 retrieval

The retrieval syntactic construct is used in object_block_first and
object_block.

5.11.11.1 syntax

retrieval : /* empty */ | ‘"noretrieve" | 'retrieve"

CHAPTER 5. MQL - MINI QL

5.11.11.2 semantics
/%

* R_retrieval
* Returns : true if "noretrieve'", false otherwise.

*/
function R_retrieval (retrieval) --> boolean;
begin
if (retrieval = "noretrieve'") then
return true;
else
return false;
end;

5.11.11.3 explanation

78

The idea of retrieval is that, if the user does not wish to retrieve an
object, he or she can choose not to do so. The meaning of the result of
R_retrieval is the answer to the question “do we want to not retrieve
this object_block(_first)?”. Thus this function returns “true” if the

noretrieve modifier is present and false otherwise.

The default for object_block(_first) is to assume that we do want
to retrieve the objects. This differs from Doedens’ QL, where we have to

explicitly mark blocks for retrieval.

If a an object_block(_first) B has the no_retrieve modifier, no ob-

jects matched inside B can be retrieved either.

5.11.12 first last

The first_last construct is used in object_block_first.

5.11.12.1 syntax

firstlast : /* empty */ | "first" | "last" ;

5.11.12.2 semantics

/*

* R_first_last

* Returns : enum_first_last

*/
function R_first_last(firstlast) --> enum_first_last;
begin

if (firstlast = "first") then
return first;

CHAPTER 5. MQL - MINI QL 79

else if (firstlast = "last") then
return last;
else
return no_first_last;
end;

5.11.12.3 explanation

The idea of “first” and “last” in an object_block_first is that, if a
“first” is present, the first monad of any object matched to that object_block_first
must be the same as the universe’s first monad.
On the other hand, if “last” is present, the object’s last monad has to
be the same as the universe’s last monad. If neither “first” nor “last” is
present, there is no restriction.

5.11.13 hat

The function hat is used in object_block_first and object_block.

5.11.13.1 syntax

The syntax of hat is “O"U”, where O and U are two sets of monads. O is an
object and U is a universe.

5.11.13.2 semantics

function hat(0 : object, U : set_of_monad _ms) -->
set_of_monad_ms;
begin
return(0.first() .. 0.last());
end;

5.11.13.3 explanation
The O"U function is defined on p. 156 in Doedens. There, it is defined as:

“O"U is the smallest pow m object without gaps relative to U
that O is part of and which is itself part of U. In other words
O"U is the pow_m object which has the monads of O plus the
monads of the gaps of O relative to U.” (p. 156)

Here, I have simplified the definition to be simply the range O.first() ..
O.last(). This is OK, since U is never empty, and O is always part_of Ul!
This is because we only call this function if O part of Su, which is always
part_of U.

CHAPTER 5. MQL - MINI QL 80

5.11.14 object block first
5.11.14.1 syntax

b

object_block_first : [’ type retrieval firstlast
features variable_assignments my_blocks
7]7 ;
type : IDENTIFIER
retrieval : /* empty */ | I'"noretrieve" | 'retrieve"
firstlast : /* empty */ | "first" | "last" ;

Note that variable_assignments come after features. This is to keep the
intuition that variables should only be used (i.e., referred to in features)
inside the my_blocks of the enclosing object. It is not deemed useful to be
able to assign variables and use them at the same level (i.e., in the same
object_block), since the features can just be referred to directly.

5.11.14.2 semantics

* R_object_block_first

* Returns : mo_nr (pair: (matched_object, noretrieve))
* NOTE: The matched_object cannot be EMPTY_mo

* ON FAIL: (NIL_mo,true)

*

function R_object_block_first(U,Su,var S,var i,limit,
object_block_first) --> mo_nr ;
var
0 : object;
Inner : sheaf;
fl : enum_first_last;
U’ : set_of_monad_ms;
inst : instances;
begin
inst := inst(type,U);

/* --- Calculate first or last. --- */
fl := R_first_last(firstlast);

while (true) do
begin

CHAPTER 5. MQL - MINI QL 81

/* --- If we have gone too far, we must fail. --- */
if (i > length(inst)) then
return (NIL_mo,true);

/* --- Get the object of type "type" which is the i’th
within the universe U. --- %/
0 := inst[i];

/¥ --- If we have a limit, we must make sure it is
enforced. --- */
if (1limit <> 0) then
begin
if (0.first() > (U.first() + limit)) then
return (NIL_mo,true);
end;

/* --- Only do rest of checking if the first/last rules
are obeyed. --- */
if (((f1 = first) and (0.first() = U.first()))
or
((f1 = last) and (0.last() = U.last()))
or (fl1 = no_first_last)) then
begin

/* --- So, the first/last rules were obeyed. --- */
if (0 part_of Su) then
begin

/* --- So, 0 was part_of the substrate. Good.
- */

if (R_features(S,0,features)) then
begin

/* --- So, the features matched as well.
Good. --- */

/* --- Assign variables. --- */
R_variable_assignments(S,0,
variable_assignments) ;

/* ——- Make new universe
(0.first()..0.last()) --- */
U’ = hat(0,U); /*x 0°U %/

CHAPTER 5. MQL - MINI QL 82

/* --- Try (i.e., compute) the inner blocks.

*/
Inner := R_my_blocks(U’,0,S,my_blocks);

/* --- Only return the object if the inner
did not fail. Make sure that noretrieve
rules are obeyed. --- */

if (Inner <> "“// ™)

return ([0.id Inner],
R_retrieval (retrieval));

5.11.14.3 explanation

The retrieval function R_object_block_first takes a universe U, a sub-
strate Su, a call-by-name state S, a call-by-name index into an inst(T,U) i,
a monad m-limit 1imit, and the object_block_first syntactic construct
which we wish to treat. It returns an mo_nr.

An mo_nr is a pair (matched_object,boolean), where the boolean tells
whether we should not retrieve the matched_object into a sheaf. When
returning a matched_object that arises from having found an actual ob-
ject _dm, this boolean comes from the retrieval part of the syntax for an
object_block_first (see the syntax, above).

Thus the result of R_object_block_first is one matching of an object_block_first,
or a fail.

The basic idea of this function is to run through the inst(T,U) array,
starting at i, until we either hit the end of the array or find an object. Here,
T is the type specified in the object_block_first syntactic construct, and
U is the universe U which we were passed as a parameter. As will be recalled,
inst(T,U) is an array which gives, in order of object ordinal, all the objects
of type T which are part of the universe U.

If this object_block_first is the first in a blocks, limit will be 0. If,
however, this object_block_first is nested inside a block_string in such
a way that it comes right after a power syntactic construct, 1imit comes
from this power construct. If there is no limit on the power construct, limit
will be 0. If there is a limit, 1imit will be this limit.

When limit is non-zero, it means that there must be at most 1limit

CHAPTER 5. MQL - MINI QL 83

monads between the first monad of the parameter-universe U and the first
monad of an object O matched by the object_block_first. When limit
is 0, it means that no limit is enforced.

This function only returns in the following cases:

1. If we went past the end of the inst(T,U) array, we return (NIL_mo,true),
which means “failed match”.

2. If we did find an object at some inst(T,U)[i], but the 1imit constraint
was not upheld, we also return (NIL_mo,true).

3. If we did find an object at some inst(T,U)[i], and a lot of constraints
on this object were upheld (see below), we return the matched_object
along with the boolean returned by R_retrieval (retrieval).

Otherwise, we just keep incrementing i until one of the three cases above
apply.

This function is actually quite simple, despite its cluttered look. The
basic outline is as follows:

1. Calculate inst := inst(type,U).
2. Calculate f1 :=R_first_last(firstlast).

3. WHILE (true) DO

(a) IF (4 is past the length of inst, THEN return (NIL_mo,true).
(b) Calculate 0 := inst[i].

(c) Make sure that the rules on limit are obeyed. If they are not,
return (NIL_mo,true).

(d) IF (the rules on firstlast are obeyed) AND (0 part of Su) AND
(the features match) THEN

i. Call R_variable_assignments so that we assign variables

with the features of this 0 (see section 5.11.23 on page 96).

ii. Calculate U” :=hat(0,U). (See section 5.11.13 on page 79.)

iii. Calculate the inner blocks by calling R_my_blocks with U’ as
the universe, 0 as the substrate, S as the state, and my_blocks
as the syntactic construct.

iv. IF (this Inner blocks was not a failed match, return a matched_object
consisting of the object id _d of 0 along with the Inner sheaf.
This is, of course, paired with R_retrieval(retrieval),
since we are returning an mo_nr rather than amatched_object.

(e) Increment i by 1 and take one more pass through the WHILE
loop.

CHAPTER 5. MQL - MINI QL 84

5.11.15 my blocks
5.11.15.1 syntax

my_blocks : /* empty */ | Dblocks ;

5.11.15.2 semantics

/%
* R_my_blocks
* Returns: sheaf

* For my_blocks being empty: // {} (not a fail)
* For my_blocks being a blocks: The sheaf for the blocks
*/
function R_my_blocks(U,Su,var S,my_blocks) --> sheaf;
begin
/* --- decide which syntactic incarnation to use --- */

if (my_blocks = blocks) then
return R_blocks(U,Su,S,blocks);
else
return "// {}";
end;

5.11.15.3 explanation

As will be recalled from the grammar in section 5.9.3 on page 58, my_blocks
represents the inner blocks in an object_block or object_block_first.
The reason why we have a special nonterminal and not just a blocks is, of
course, that we want it to be able to be empty. When empty, we should
just return the least sheaf which is not a failed match (i.e., “// {}”). When
non-empty, we should return whatever the retrieveal function on the inner
blocks returns (see above). R_my_blocks does just that.

5.11.16 rest of block str
5.11.16.1 syntax

rest_of_block_str : block | blockl rest_of_block_strl ;

NOTE: The 1’s on the second usage of block and rest_of_block_str are
just there for identification purposes.

5.11.16.2 semantics
/%

CHAPTER 5. MQL - MINI QL 85

* R_rest_of_block_str
* Returns : set_of_straws
* ON FAIL: {}
*/
function R_rest_of_block_str(U,Su,var S,Sm,rest_of_block_str) -->
set_of_straws;
var
noretrieve : boolean;
mo : matched_object;
rest : set_of_straws;
Sm’ : monad; /* --- Start Monad. --- %/
Result : set_of_straws;
somn : set_of_mo_nr;

begin
/* --- decide which syntactic incarnation to use --- */
if (rest_of_block_str = block) then
begin
/* --- Get the result of R_block. --- */
somn := R_block(U,Su,S,Sm,block);
if (somn has NIL_mo)
return {}; /* --- This means that block was an
object_block, and that the match
failed.
There will only be one (NIL_mo, true)
in the somn set if it failed. --- */
/* --- Make somn into the set straws, each straw consisting
of those matched objects which are in the set_of_mo_nr. --- x/
Result := {};
for (each (mo,noretrieve) in somn) do
begin
/* --- Note: We will always get here, since the match
did not fail. --- x/
if (not noretrieve) then
Result := Result "union" { { mo } };
end;
return Result;
end else /* --- Dblockl rest_of_block_strl --- x/
begin

/* --- Get first block. --- %/

CHAPTER 5. MQL - MINI QL 86

somn := R_block(U,Su,S,Sm,blockl);

/*¥ —--- If it failed, return {}. See the counterpart
above for further explanations. --- */
if (somn has NIL_mo) then
return {};
/* --- Calculate the rest. --- */
Result := {}
for (each (mo,noretrieve) in somn) do
begin
/* --- Note: We will always get here, since the
match did not fail. --- */
/* --- EMPTY_mo is there if we matched an

opt_gap_block which had no gap there.
In this case, the somn will consist
only of the single element

(EMPTY_mo, true). --- */
/* --- Calculate Start Monad. --- */
if (mo = EMPTY_mo) then
Sm’ := Sm;
else
Sm’ := mo.last() + 1;
/* --- Get the rest. This is a recursive call to
ourselves. --- %/

rest := R_rest_of_block_str(U,Su,S,
Sm’ ,rest_of_block_strl);

/* --- Only add if rest matched! --- */
if (rest <> {}) then
begin
/* --- Dnly add mo if noretrieve was false.
- */
/* --- In both cases, add the rest. */
if (noretrieve) then
Result := Result "union" rest;
else
Result := Result "union" join({ mo }, rest);
end;
end;

end;

CHAPTER 5. MQL - MINI QL 87

return Result;
end;
end;

5.11.16.3 explanation

The R_rest_of_block_str retrieval function takes a universe U, a substrate
Su, a call-by-name state S, a Start Monad m Sm, and the rest_of_block_str
syntactic construct which we wish to treat. It returns a set of straws. The
result of R_rest_of_block_str is one matching of a rest_of_block_str.
Note that this may involve several straws.

A construct which is crucial in understanding this function is the set_of_mo_nr’s.
It consists of a set of mo_nr’s. Anmo_nr is a pair, (matched_object,boolean),
where the boolean is intended to convey information on “do we not want to
retrieve this matched_object?”. The matched_object in the pair can only
be one of these four things:

1. A NIL_mo, which means that a subsequent call to R_object_block
failed.

2. An EMPTY_mo, which means that we tried to match an opt_gap_block
against an empty gap (i.e., there was no gap). This is not a fail.

3. An [0.id Inner-Sheaf] matched_object, where the 0.id is an ob-
ject id_d of an object dm.

4. An [object id_m // {}] matched_object, where the object id m
refers to a pow_ m object of a gap we wished to match with an opt_gap_block.

In the first two cases, the boolean is always “true”, meaning that we do
not wish to retrieve the matched_object. This is very significant in this
function, as it means that neither of these two will get into any sheaf.
In the two last cases, the boolean may be “false” or “true” depending
on the “noretrieve” or “retrieve” keywords used (or not used) in the
opt_gap_block or object_block.

The outline of the function is not that difficult to understand. It just
looks cluttered in the code. The outline is as follows:

1. Deciding syntactic incarnation, if this is the first incarnation, namely
block, do the following:

(a) Set somn := the result of a call to R_block on the block.

(b) IF (the somn is a singleton set with a (NIL_mo,true) as the ele-
ment) THEN return {}. This is because we failed.

(c) If not, initialize Result to be {}.

CHAPTER 5. MQL - MINI QL 88

(d) FOR each (mo,noretrieve) in somn, DO
i. IF the noretrieve is false (i.e., we do want to retrieve the
object), THEN
A. make a new straw consisting solely of mo and add the new
straw to Result. (Note that, because of the IF-clause,
this only happens to matched objects of type 3 and 4
above)

(e) Return Result.

2. If the syntactic incarnation is “blockl rest_of_block_strl”, do the
following:

(a) Set somn := the result of a call to R_block on the blockl.

(b) IF (the somn is a singleton set with a (NIL_mo,true) as the ele-
ment) THEN return {3.

(¢) If not, initialize Result to be {}.

(d) FOR each (mo,noretrieve) in somn, DO (note that only matched_objects

of type 3 and 4 above make it into the Result set of straws)
i. IF (mo is EMPTY_mo) THEN
A. Initialize Sm’ to be Sm
ii. ELSE
A. Initialize Sm’ to be mo.last() + 12

iii. Set rest to be the result of a recursive call to R_rest_of_block_str,

with the parameters the same as our formal parameters, ex-
cept use Sm’ in place of Sm.
iv. IF (rest was not empty) THEN
A. TF (noretrieve for the mo_nr in the FOR-clause was
true) THEN add rest to Result, but do not add mo.
B. ELSE add the result of join({mo},rest) to Result (see
below)

(e) Return Result.

The significance of the join is that it “multiplies” the straw “{mo}” into all
the other straws in rest (see section 5.11.7 on page 69 for the definition of
join). This is what we want, since it captures the idea that each block
should be in a straw with all the other blocks (and object_block_firsts)
with which it goes in the query.

Note that, in the second syntactic incarnation, the result is non-empty
only if both the call to R_blocks and the recursive call to R_rest _of block str
did not fail. This is because the whole rest of block str must be present
for the function not to fail.

*Where mo.last () refers to the last monad m of the object denoted by the object id _d
in the matched_object or the last monad m of the object id _m in the matched_object.

CHAPTER 5. MQL - MINI QL 89

5.11.17 Dblock
5.11.17.1 syntax

block : opt_gap_block | object_block ;

5.11.17.2 semantics
/*

*

R_block
Returns: set_of_mo_nr

*

* ON FAIL: { (NIL_mo,true) }

*

*/

function R_block(U,Su,var S,Sm,block) --> set_of_mo_nr
begin

if (block = opt_gap_block)
return R_opt_gap_block(U,Su,Sm,opt_gap_block);
else
return R_object_block(U,Su,S,Sm,object_block);
end;

5.11.17.3 explanation

This function takes a universe U, a substrate Su, a call-by-name state S, a
Start Monad m Sm, and the block syntactic construct which we must treat.
It returns a set_of_mo_nr, which is a set of mo_nr’s. An mo_nr is a pair
(matched_object,boolean), where the boolean indicates whether we do
not want to retrieve the matched_object.

The function just decides syntactic incarnation and calls the relevant
retrieval function.

The result of a block is either:

1. For obt_gap_block:

(a) An object id m of a pow _m object indicating a gap starting at
monad Sm, paired with information about whether to retrieve the
gap (the decision about whether to include them in a straw is
made higher up in the hierarchy), OR

(b) an EMPTY_mo matched_object paired with the information that
we do not want to retrieve it, OR

2. For object_block:

CHAPTER 5. MQL - MINI QL 90

(a) A set of matched_objects starting at monad Sm, paired with in-
formation about whether we do not want to retrieve them (as
with opt_gap_block, the decision about whether to include them
in a straw is made higher up in the hierarchy), OR

(b) A NIL_mo matched_object paired with the information that we
do not want to retrieve it. A NIL_mo matched_object means
“failed match”.

5.11.18 opt_retrieval

The opt_retrieval syntactic construct is used in opt_gap_block.

5.11.18.1 syntax

opt_retrieval : /% empty */ | 'noretrieve" | ‘'retrieve" ;

5.11.18.2 semantics
/%

* R_opt_retrieval
* Returns: false on must retrieve, true otherwise

*/
function R_opt_retrieval(opt_retrieval) --> boolean;
begin
if (opt_retrieval = "retrieve") then
return false;
else
return true;
end;

5.11.18.3 explanation

The opt_retrieval syntactic construct is used in the opt_gap_block syn-
tactic construct. It is used to specify explicitly or implicitly whether the user
wants to retrieve the optional gap or not. The default, when empty, is to
assume that we do not want to retrieve the optional gap. Thus, if the user
wants to retrieve the gap, they must explicitly write “retrieve”.

The reason why we return “false” on “retrieve” and “true” otherwise
is that the boolean really answers the question “do we not want to retrieve
this gap?”.

Note that this has different semantics from retrieval for the default.
Here, the default is to assume that we do not want to retrieve the gap.
For retrieval, the default is to assume that we do want to retrieve the
object_block(_first).

CHAPTER 5. MQL - MINI QL 91

5.11.19 opt_ gap block
5.11.19.1 syntax
opt_gap_block : [’ '"gap?" opt_retrieval]’ ;
opt_retrieval : /% empty */ | 'noretrieve" | ‘'retrieve" ;
5.11.19.2 semantics

/*
* R_opt_gap_block

* Returns: (matched_object, noretrieve)
* ON FAIL: Cannot fail. Returns (EMPTY_mo,true) if there is no gap.
*
*/
function R_opt_gap_block(U,Su,Sm,opt_gap_block) --> set_of_mo_nr ;
begin

if (there exists monad m such that Sm..m is a gap in Su
with respect to U) then
return { ([pow_m(Sm..m) // {} 1,
R_opt_retrieval (opt_retrieval)) 7};
end
return { (EMPTY_mo,true) 7};
end;

5.11.19.3 explanation

This function takes a universe U, a substrate Su, a Start Monad Sm, and
the opt_gap_block syntactic construct which is to be treated. It returns a
set_of _mo_nr, which is a set of mo_nr’s. Anmo_nr is a pair (matched_object,boolean),
where the boolean part is inteded to mean “do we not want to retrieve this
matched_object?”. The result is one matching of an opt_gap_block.

The function always returns a singleton set. The reason why, then, we
choose to return a set_of _mo_nr rather than an mo_nr, is that it seems more
elegant: The R_opt_gap_block function is used in R_block in the same way
as the R_object_block function, which returns a set_of_mo_nr.

If there is no gap in Su with respect to U which starts at Sm, we return
{ (EMPTY_mo,true) }.

If, on the other hand, such a gap starting at Sm exists, we return a
matched_object paired with the result of R_opt_retrieval (opt_retrieval).
The matched_object consists of the object id m of a pow m object con-
sisting of the gap, coupled with the least sheaf which is not a failed retrieval
(/77 A¥).

Since U is always a universe (see our definition in section 5.4.1 on page
48), we can calculate the existence of gaps in Su with respect to U from Su

CHAPTER 5. MQL - MINI QL 92

alone. Thus we need not even inspect the database, but can just look at
Su. This should be easy, given the implementation of a set of monad m’s
suggested in section 4.2 on page 32.

Note that this function cannot fail. Instead, when there is no gap, we
return “{ (EMPTY_mo,true) }.

5.11.20 last
The last syntactic construct is used in object_block, which will be treated
below.

5.11.20.1 syntax

last : /% empty */ | "last" ;

5.11.20.2 semantics

/%

* R_last

* Returns: a member of enum_first_last:
- last if "last"

* - no_first_last otherwise
*/
function R_last(last) --> enum_first_last;
begin
/* --- decide which syntactic incarnation to use --- */

if (last = "last") then
return last;
else
return no_first_last;
end;

5.11.20.3 explanation

The idea of the last syntactic construct has been explained under the
firstlast syntactic construct in section 5.11.12.3 on page 79.

5.11.21 object block
5.11.21.1 syntax

object_block : [’ type retrieval last

features variable_assignments my_blocks °’]°
type : IDENTIFIER
retrieval : /% empty */ | 'noretrieve" | ‘'retrieve"

CHAPTER 5. MQL - MINI QL 93

last : /% empty */ | "last" ;

5.11.21.2 semantics

R_object_block

Returns:

set_of_mo_nr
{ (NIL_mo,true) }

On success: There are no (NIL_mo,true) in the set_of_mo_nr!

*
*
* ON FAIL:
*
*

function R_

object_block(U,Su,var S,Sm,object_block) -->

set_of_mo_nr ;

var

0 : object;

Inner :

sheaf;

fl : enum_first_last;
U’ : set_of_monad_ms;

Strawl

Result
begin

/% ---

Result

/% ---
Strawl

straw;
set_of_mo_nr;

Initialize Result. --- */

= {};

Get all 0’s beginning at Sm (Start Monad). --- */
:= (all 0 of type "type" such that O0.first() = Sm);

for (each 0 in Strawl) do

begin
/*

/%

fl

/%

--- Note that we might not get here, since Strawl
might be empty. --- */

--- Calculate last/no_first_last. It is deemed better
to have it here rather than outside the "for" loop,
since here it is only executed 0(n) times, where n is
the number of 0’s beginning at Sm. If we put it
outside, we will execute it _every_ time we call
R_object_block, which is deemed to be more times than
if we place it here. There might not be any objects
starting at Sm! --- */

:= R_last (object_block);

--- Make sure that the last/mno_first_last rule is
obeyed. --- */

CHAPTER 5. MQL - MINI QL 94

if (((f1 = last) and (0.last() = U.last()))
or (f1 = no_first_last)) then
begin
/* --- So, the last/no_first_last rule was obeyed.
. */
if (0 part_of Su) then
begin
/* --- So, we are part_of Su. --- */
if (R_features(S,0,features)) then
begin
/¥ --- So, the features matched. --- %/

/* --- Assign variables. --- */
R_variable_assignments(S,0,
variable_assignments);

/* ——- Make new universe to be
0.first()..0.last(). --- %/
U’ = hat(0,U); /x 0°U %/

/* --- Calculate inner. --- */
Inner := R_my_blocks(U’,0,S,my_blocks);

/* --- Dnly add object if Inner was a
success. --- */

if (Inner <> "// ™)
Result := Result "union"

{ ([0.id Inner 1],
R_retrieval (retrieval)) };
end;
end;
end;
end;

if (Result = {})

return { (NIL_mo,true) 7};
else

return Result;

end;

5.11.21.3 explanation

The R_object_block function takes a universe U, a substrate Su, a call-by-
name state S, a start-monad m Sm, and the object_block syntactic con-

CHAPTER 5. MQL - MINI QL 95

struct for treatment. It returns a set of pairs of (matched_object,boolean)
(set_of _mo_nr), whose intended meaning is, “a matched_object paired with
a boolean being “true” if we are not to retrieve this matched_object”.

The function returns the set_of _mo_nr corresponding to all those objects
of type type which start at Sm, and for which a number of constraints hold.
The reason why we return a set_of_mo_nr. rather than a single mo_nr, is,
of course, that more than one object of type type may start at Sm.

On failure, the function returns the singleton set { (NIL_mo,true) }.

The Sm parameter is a "Start Monad" parameter. It is used to get all
those objects of the given type which start at the given monad. This is why
it is handy to store in a monad_d a list of those objects which start at a given
monad_ m.

This function is actually quite simple, despite its cluttered look. The
steps are as follows:

1. Initialize Result to be the empty set of matched_objects (a straw).

2. Get in straw Strawl all those objects of type type which start at Sm.
This is done by inspection of the monad d corresponding to Sm.

3. For each 0 in Strawl, do the following:

(a) IF (the rules about last are obeyed) AND (0 part_of Su) AND
(the features all match) THEN
i. Make variable assignments (call R_variable_assignments).
ii. Calculate U’ = 07U (see section 5.11.13 on page 79)

iii. Calculate the result of the inner my_blocks (call R_my_blocks
with U? as the universe and 0 as the substrate)

iv. TF (the call to R_my_blocks was a success) THEN add the
matched object “[0.id Inner]” paired with the result of
R_retrieval(retrieval) to Result.

4. If Result is empty, return { (NIL_mo,true) }.

5. Else, return Result.

Note that the “union” when adding the new object can be just a concatena-
tion to a list, since we are sure that the new member is not there.

5.11.22 features

5.11.22.1 syntax

features : /% empty */ | ffeatures ’;’
ffeatures : fterm | ffeatures '"or" fterm

bl

CHAPTER 5. MQL - MINI QL 96

fterm : ffactor | fterm "and" ffactor ;

ffactor : '"not" ffactor | (> ffeatures ’)° | feature ;
feature : feature_name ’=’ value ;

feature_name : IDENTIFIER ;

value : enum_val | INTEGER | STRING | variable ;
enum_val : IDENITIFIER ;

5.11.22.2 semantics
/%

* R_features
* Returns : nothing
*/
function R_features(S,0,features) --> boolean;
begin
if features empty, then
return true.
else,
traverse tree represented by features,
deciding truth-value with respect to O.
Return the result.
end;

5.11.22.3 explanation

The R_features function takes a call-by-wvalue state S, an object 0, and the
features syntactic construct which we wish to treat. It returns a boolean.
The result of R_features is the answer to the question, “do the feature-
constraints in features match with the features of the object 0, given the
state S77.

The ffeatures syntactic construct is assumed to be represented as an
Abstract Syntax Tree (AST). We can then traverse the tree in depth-first
order, deciding truth-value recursively. We may use short-circuit evaluation,
since there are no side-effects.

5.11.23 variable assignments
5.11.23.1 syntax

variable_assignments : variable_assignment |
variable_assignments
variable_assignment ;

variable_assignment : variable ":=" feature_name ’;’ ;

CHAPTER 5. MQL - MINI QL 97

5.11.23.2 semantics
/%

* R_variable_assignments
* Returns : nothing

* NOTE: updates S

*/

function R_variable_assignments(var S,0,variable_assignments);

begin
for (each variable_assignment "r := feature_name") do
S.r := 0.feature_name();
end;

5.11.23.3 explanation

The R_variable_assignments retrieval function takes a call-by-name state
S, an object 0, and the variable_assignments syntactic construct which
we wish to treat. It returns nothing, only updating S.

The function updates the state, S, in such a way that all variables in
variable_assignments get assigned the value of their corresponding feature,
taken on Q.

5.12 Conclusion

In this chapter, we have given most of the framework or design for a query
engine for EMdF databases, as embodied in the syntax and semantics of
MQL. Even though some concepts were “stolen” from Doedens, most of the
chapter has been original.

Among the major points of this chapter can be mentioned the description
and explanation of the sheaf, and the description and explanation of the MQL
grammar and MQL variables. The majority of the chapter has dealt with
an operational, syntax-driven specification of MQL.

As it stands, an MQL query engine should be relatively straightforward
to implement.

Chapter 6

Conclusion

6.1 Conclusion

This bachelor thesis has been about one approach to text databases, namely
a modification and extension of the MdF model by Crist-Jan Doedens. We
have detailed and explained the MdF model as given by Doedens in his PhD
dissertation. We have built a framework of concepts on top of the MdF
model, obtaining the EMdF model. We have given many hints on how to
implement the EMdF model on top of an actual OODBMS. Lastly, we have
developed, motivated, and explained a query language for EMdF databases,
MQL.

98

